Improvement of periodic distribution of water resources routine considering the assimilative capacity of a recipient river

V. Brook, S. Kovalenko

 

DOI: 10.5281/zenodo.2592250

Received: 18 February 2019

Accepted: 6 March 2019

Published online: 10 March 2019

 

 

ABSTRACT

One of the topical environmental problems is the pollution of river waters due to the periodic dumping of pollutants with return water from the accumulators of polluted industrial or mine waters. This problem is urgent for many enterprises of the chemical industry of the world, and in particular Ukraine. The lack of an approved methodology for the development of regulations for the periodic dumping of return water from storage can lead to violations of regulatory requirements for the quality of surface water. The purpose of the study is to improve the regulation of the periodic drainage of return water from the sludge tank at PJSC Sumykhimprom in the Psel River, taking into account the seasonal absorption capacity of the recipient river, which is necessary to ensure regulatory requirements for the quality of surface water in the control section of the return water production. In order to achieve the goal, the following tasks were solved: the minimum multiplicity of dilution of return water required for the fulfillment of regulatory requirements was calculated; the typical hydrograph of the Psel River was constructed and analyzed; the maximum allowable return water costs were determined in the months of the year; the distribution return water discharge volume was calculated, while accounting for the assimilative capacity of the recipient river. An improved algorithm was used to calculate the regulations for the return water discharge from the accumulators of polluted industrial water of OJSC Sumykhimprom. It is determined that the minimum required multiplicity of dilution in the control section of issue № 2 of JSC «Sumykhimprom» is determined by the indicator of ammonium nitrogen and is 222.3. March and April were the most favorable for the discharge of return water, while the maximum allowable return water costs for these months were respectively 0.11 and 0.08 m3/s.

 

Keywords: surface waters; typical hydrograph; reciprocal dilution; concentration of substances; Frolov-Rodziller method.

 

REFERENCES

1. Walker, D. B., Baumgartner, D. J., Gerba, C. P., Fitzsimmons, K. (2019). Environmental and Pollution Science (Third Edition). Chapter 16 – Surface Water Pollution. 261–292. doi: 10.1016/B978-0-12-814719-1.00016-1. Available: https://www.sciencedirect.com/science/article/pii/B9780128147191000161.

2. Loboychenko, V. M., Vasyukov, O. Ê. (2017). Otsinka vplyvu antropohennoyi diyalʹnosti na stan poverkhnevykh vod vodoymyshch za parametrom pytomoyi elektroprovidnosti. Technogenic and Ecological Safety, 2, 35–39. Available: http://nuczu.edu.ua/sciencearchive/JournalTechnogenicAndEcologicalSafety/Vol-2/LoboychenkoV.-Vol-2-2017-35-39.pdf.

3. Karn, S., Harada, H. (2001). Surface water pollution in three urban territories of Nepal, India and Bangladesh. Environmental Management, 28(4), 483–496. doi: 10.1007/s002670010238.

4. Sihag, P., Singh, B. (2018). Field evaluation of infiltration models. Technogenic and Ecological Safety, 4(1/2018), 3–12. doi: 10.5281/zenodo.1239447.

5. Ziarati, P., Namvar, S., Sawicka, B. (2018). Heavy metals bio-adsorption by Hibiscus Sabdariffa L. from contaminated weather. Technogenic and Ecological Safety, 4(2/2018), 22–32. doi: 10.5281/zenodo.1244568.

6. U. S. Environmental Protection Agency (EPA). (2017). Water quality standards handbook: Chapter 3: Water quality criteria. EPA-823-B-17-001. EPA Office of Water, Office of Science and Technology, Washington, DC. Accessed November 2018. Available: https://www.epa.gov/sites/production/files/2014-10/documents/handbook-chapter3.pdf.

7. Bellucci, G. L., Giuliani, S., Mugnai, C. et al. (2010). Anthropogenic metal delivery in sediments of Porto Marghera and Venice Lagoon (Italy). Soil and Sediment Contamination, 19, 42–57.

8. Huang, X., Sillanpää, M., Gjessing, E. T. et al. (2010). Environmental impact of mining activities on the surface water quality in Tibet: Gyama valley. Science of the Total Environment, 408, 4177–4184.

9. Schmitt, C. J., Whyte, J. J., Brumbaugh, W. G., Tillitt, D. E. (2005). Biochemical effects of lead, zinc, and cadmium from mining on fish in the Tri-States district of northeastern Oklahoma, USA. Environmental Toxicology and Chemistry, 24(6), 1483–1495.

10. Baillieul, M., Blust, R. (1999). Analysis of the swimming velocity of cadmiumstressed Daphnia magna. Aquatic Toxicology, 44, 245–254.

11. Cailleaud, K., Michalec, F-G., Forget-Leray, J. et al. (2011). Changes in the swimming behavior of Eurytemora affinis (Copepoda, Calanoida) in response to a sub-lethal exposure to nonylphenols. Aquatic Toxicology, 102, 228–231. doi: 10.1016/j.aquatox.2010.12.017.

12. Berger, U., Glynn, A., Holmström, E. K. et al. (2009). Fish consumption as a source of human exposure to perfluorinated alkyl substances in Sweden – Analysis of edible fish from Lake Vätternand the Baltic Sea. Chemosphere, 76(6), 799–804. doi: 10.1016/j.chemosphere.2009.04.044.

13. Fölster, J., Huser, Br. (2011). Water Framework Directive and Mixing Zone Guidelines. Applied on a Smelter and Mine Scenario at two Boliden Sites. Arnola Ceka. Swedish University of Agricultural Sciences. Available: https://stud.epsilon.slu.se/3639/1/MIXING_ZONE_PROJECT%20AC.pdf.

14. Kovalenko, S. A., Brook, V. V. (2017). Vliyanie deyatel'nosti predpriyatiya «SUMYKhIMPROM» na ekologicheskoe sostoyanie r. Psel. Materіali shchorіchnoї mіzhnarodnoї naukovo– tekhnologіchnoї konferentsії «Ekologіchna і tekhnogenna bezpeka.Okhorona vodnogo і povіtryanogo baseynіv. Utilіzatsіya vіdkhodіv», 76–78.

15. U. S. Environmental Protection Agency (EPA). (2017). Guidance for the determination and assessment of mixing zones. EPA-823-B-17-001. EPA Office of Water, Office of Science and Technology, Washington, DC. Accessed November 2010. Available: https://www.epa.vic.gov.au/~/media/Publications/1344.pdf.

16. Rodziller, I. D. (1984). Prognoz yakostі vodi vodoym-priymachіv kolektorno-drenazhnikh vod. Stroyizdat, Moscow, 262 s.

17. The site «Wikipedia. Free Encyclopedia». Available: https://uk.wikipedia.org/wiki/%D0%9F%D1%81%D0%B5%D0%BB.

18. Pravila okhoroni vnutrіshnіkh mors'kikh vod і teritorіal'nogo morya Ukraїni vіd zabrudnennya ta zasmіchennya. (2002). Postanova Kabіnetu Mіnіstrіv Ukraїni vіd 29 bereznya 2002 r. № 431. Kiїv, 2002.

19. Instruktsiya pro poryadok rozrobki ta zatverdzhennya granichno dopustimikh skidiv (GDS) rechovin u vodni ob'ekti iz zvorotnimi vodami. (1994). Kharkiv, 79 s.

20. Vodniy kodeks Ukraїni: Ofіtsіyne vidannya. (2004). Kiїv, VD «Іn Yure», 136 s.

21. Spravochnik po vodnym resursam / Pod red. B. I. Strel'tsa. (1987). Kiїv, Urozhay, 304 s.

22. Technical Guidelines for the identification of mixing zones pursuant to Art. 4(4) of thee Directive 2008/105/EC. October 2010.

23. Kovalenko, S. A., Brook, V. V. (2017). Obespechenie ekologicheskikh trebovaniy pri sbrose vozvratnykh vod predpriyatiya Sumykhimprom v r. Psel. Preduprezhdenie i likvadatsiya chrezvychaynykh situatsiy: protivodeystvie sovremennym vyzovam i ugrozam: sbornik nauchnykh trudov mezhdunarodnoy nauchno-prakticheskoy konferentsii, Minsk, 198–200. Available: http://ucp.by/images/file/Konf/2018/ODKB.pdf.

24. Kovalenko, S. A., Brook, V. V. (2017). Vliyanie predpriyatiya OAO «Sumykhimprom» na prirodnye vody reki Psel. Problemi ta perspektivi rozvitku sistem bezpeki zhittєdіyal'nostі: XІІ Mіzhnarodna naukovo-praktichna konferentsіya molodikh vchenikh, kursantіv ta studentіv, L'vіv, 288–289.

 

ЛІТЕРАТУРА

1. Walker D. B., Baumgartner D. J., Gerba C. P., Fitzsimmons K. Environmental and Pollution Science (Third Edition). Chapter 16 – Surface Water Pollution. 2019. P. 261–292. doi: 10.1016/B978-0-12-814719-1.00016-1. Available: https://www.sciencedirect.com/science/article/pii/B9780128147191000161.

2. Loboychenko V. M., Vasyukov O. Ê. Otsinka vplyvu antropohennoyi diyalʹnosti na stan poverkhnevykh vod vodoymyshch za parametrom pytomoyi elektroprovidnosti. Technogenic and Ecological Safety. 2017. Vol. 2. P. 35–39. Available: http://nuczu.edu.ua/sciencearchive/JournalTechnogenicAndEcologicalSafety/Vol-2/LoboychenkoV.-Vol-2-2017-35-39.pdf.

3. Karn S., Harada H. Surface water pollution in three urban territories of Nepal, India and Bangladesh. Environmental Management. 2001. Vol. 28, Issue 4. P. 483–496. doi: 10.1007/s002670010238.

4. Sihag P., Singh B. Field evaluation of infiltration models. Technogenic and Ecological Safety. 2018. Vol. 4(1/2018). P. 3–12. doi: 10.5281/zenodo.1239447.

5. Ziarati P., Namvar S., Sawicka B. Heavy metals bio-adsorption by Hibiscus Sabdariffa L. from contaminated weather. Technogenic and Ecological Safety. 2018. Vol. 4(2/2018). P. 22–32. doi: 10.5281/zenodo.1244568.

6. U. S. Environmental Protection Agency (EPA). (2017). Water quality standards handbook: Chapter 3: Water quality criteria. EPA-823-B-17-001. EPA Office of Water, Office of Science and Technology, Washington, DC. Accessed November 2018. Available: https://www.epa.gov/sites/production/files/2014-10/documents/handbook-chapter3.pdf.

7. Bellucci G. L., Giuliani S., Mugnai C. et al. Anthropogenic metal delivery in sediments of Porto Marghera and Venice Lagoon (Italy). Soil and Sediment Contamination. 2010. Vol. 19. P. 42–57.

8. Huang X., Sillanpää M., Gjessing E. T. et al. Environmental impact of mining activities on the surface water quality in Tibet: Gyama valley. Science of the Total Environment. 2010. Vol. 408. P. 4177–4184.

9. Schmitt C. J., Whyte J. J., Brumbaugh W. G., Tillitt D. E. Biochemical effects of lead, zinc, and cadmium from mining on fish in the Tri-States district of northeastern Oklahoma, USA. Environmental Toxicology and Chemistry. 2005. Vol. 24, Issue 6. P. 1483–1495.

10. Baillieul M., Blust R. Analysis of the swimming velocity of cadmiumstressed Daphnia magna. Aquatic Toxicology. 1999. Vol. 44. P. 245–254.

11. Cailleaud K., Michalec F-G., Forget-Leray J. et al. Changes in the swimming behavior of Eurytemora affinis (Copepoda, Calanoida) in response to a sub-lethal exposure to nonylphenols. Aquatic Toxicology. 2011. Vol. 102.P. 228–231. doi: 10.1016/j.aquatox.2010.12.017.

12. Berger U., Glynn A., Holmström E. K. et al. Fish consumption as a source of human exposure to perfluorinated alkyl substances in Sweden – Analysis of edible fish from Lake Vätternand the Baltic Sea. Chemosphere. 2009. Vol. 76, Issue 6. P. 799–804. doi: 10.1016/j.chemosphere.2009.04.044.

13. Fölster J., Huser Br. Water Framework Directive and Mixing Zone Guidelines. Applied on a Smelter and Mine Scenario at two Boliden Sites. Arnola Ceka. Swedish University of Agricultural Sciences. 2011. Available: https://stud.epsilon.slu.se/3639/1/MIXING_ZONE_PROJECT%20AC.pdf.

14. Kovalenko S. A., Brook V. V. Vliyanie deyatel'nosti predpriyatiya «SUMYKhIMPROM» na ekologicheskoe sostoyanie r. Psel. Materіali shchorіchnoї mіzhnarodnoї naukovo– tekhnologіchnoї konferentsії «Ekologіchna і tekhnogenna bezpeka.Okhorona vodnogo і povіtryanogo baseynіv. Utilіzatsіya vіdkhodіv». 2017. P. 76–78.

15. U. S. Environmental Protection Agency (EPA). (2017). Guidance for the determination and assessment of mixing zones. EPA-823-B-17-001. EPA Office of Water, Office of Science and Technology, Washington, DC. Accessed November 2010. Available: https://www.epa.vic.gov.au/~/media/Publications/1344.pdf.

16. Rodziller I. D. Prognoz yakostі vodi vodoym-priymachіv kolektorno-drenazhnikh vod. Stroyizdat, Moscow. 1984. 262 s.

17. The site «Wikipedia. Free Encyclopedia». Available: https://uk.wikipedia.org/wiki/%D0%9F%D1%81%D0%B5%D0%BB.

18. Pravila okhoroni vnutrіshnіkh mors'kikh vod і teritorіal'nogo morya Ukraїni vіd zabrudnennya ta zasmіchennya. (2002). Postanova Kabіnetu Mіnіstrіv Ukraїni vіd 29 bereznya 2002 r. № 431. Kiїv, 2002.

19. Instruktsiya pro poryadok rozrobki ta zatverdzhennya granichno dopustimikh skidiv (GDS) rechovin u vodni ob'ekti iz zvorotnimi vodami. Kharkiv. 1994. 79 s.

20. Vodniy kodeks Ukraїni: Ofіtsіyne vidannya. Kiїv, VD «Іn Yure». 2004. 136 s.

21. Spravochnik po vodnym resursam / Pod red. B. I. Strel'tsa. Kiїv, Urozhay. 1987. 304 s.

22. Technical Guidelines for the identification of mixing zones pursuant to Art. 4(4) of thee Directive 2008/105/EC. October 2010.

23. Kovalenko S. A., Brook V. V. Obespechenie ekologicheskikh trebovaniy pri sbrose vozvratnykh vod predpriyatiya Sumykhimprom v r. Psel. Preduprezhdenie i likvadatsiya chrezvychaynykh situatsiy: protivodeystvie sovremennym vyzovam i ugrozam: sbornik nauchnykh trudov mezhdunarodnoy nauchno-prakticheskoy konferentsii, Minsk. 2017. P. 198–200. Available: http://ucp.by/images/file/Konf/2018/ODKB.pdf.

24. Kovalenko S. A., Brook V. V. Vliyanie predpriyatiya OAO «Sumykhimprom» na prirodnye vody reki Psel. Problemi ta perspektivi rozvitku sistem bezpeki zhittєdіyal'nostі: XІІ Mіzhnarodna naukovo-praktichna konferentsіya molodikh vchenikh, kursantіv ta studentіv. L'vіv. 2017. P. 288–289.