A review: investigation of plastics effect on the environment, bioplastic global market share and its future perspectives
N. Mozaffari, A. Kholdebarin, N. Mozaffari
DOI: 10.5281/zenodo.2600664
Received: 28 February 2019
Accepted: 18 March 2019
Published online: 20 March 2019
ABSTRACT
Plastics play an important role in modern life and in the plastic market base industry and economy. Recently, the consideration of pollution in the environment with plastics, especially micro-plastics and nano-plastics has been increased. Both micro-plastics and nano-plastics are the sources for pollutants in the environment. However, bioplastics provide good quality products and can be a good alternative for the traditional type of plastics. Bioplastics are divided into two main groups of biodegradable and bio base, or both. The new bioplastic will reduce environmental impacts like carbon footprint, reduce fossil fuel consumption, decrease greenhouse gas, and provide a new waste management method based on recycling. The production of bioplastic is compared to all types of plastics shows that bioplastic production only has one percent of 320 million tons of other types of productions. In recent years and due to rising demand, the market is growing. Also, the effect of education and advertisement, and public awareness will help the bioplastic industry, economy, and market to grow faster in the future. In addition, it is so important to reduce the dependency on fossil resources by the innovation of bioplastic. Methodology of this paper is to review different articles about bioplastics, summarize the main aspects of bioplastic effects, introduce different types of bioplastic, show economic perspective of bio plastic, and summarize different point of views about future of bioplastic production. As a result, review of different articles show that bioplastics can replace with traditional plastics and bioplastic market share show positive perspective in future. Results show that Increase in public awareness and also high demand of consumers, encourage producers to have more and higher quality products. But, lack of legislation, standards, land competition, production cost, acceptable quality standards, and public trust cause limitation for future development. Therefore, it seems that successful bioplastic market need more effort and time to find the way in social, industrial, and economical aspects.
Keywords: environment; micro-plastic; nano-plastic; bioplastic; global market; economy.
REFERENCES
1. Frick, A., Stern, C., Muralidharan, V. (2019). Introduction to Plastics. Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA. Available: https://application.wiley-vch.de/books/sample/3527334114_c01.pdf.
2. Costa, J. P. D. (2018). Micro- and nanoplastics in the environment: research and policymaking. Current Opinion in Environmental Science and Health, 1, 12–16. doi: 10.1016/j.coesh.2017.11.002. Available: https://www.sciencedirect.com/science/article/pii/S2468584417300417.
3. Alimi, O., Budarz, J. F., Hernandez, L. M., Tufenkji, N. (2017). Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environmental Science and Technology, 4, 1704–1724. doi: 10.1021/acs.est.7b05559.
4. Rochman, C. M., Hoh, E., Hentschel, B. T., Kaye, S. (2013). Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environmental Science and Technology, 4(3), 1646–1654. doi: 10.1021/es303700s.
5. Bergmann, M., Gutow, L., Klages, M. (2015). Marine anthropogenic litter. Springer International Publishing. doi: 10.1007/978-3-319-16510-3. Available: https://link.springer.com/book/10.1007/978-3-319-16510-3.
6. da Costa, J. P., Santos, P. S. M., Duarte, A. C., Rocha-Santos, T. (2016). (Nano) plastics in the environment sources, fates and effects. Science of the Total Environment, 1, 566–567. doi: 10.1016/j.scitotenv.2016.05.041.
7. Axelsson, C., van Sebille, E. (2017). Prevention through policy: Urban macroplastic leakages to the marine environment during extreme rainfall events. Marine Pollution Bulletin, 124(1), 211–227. Available: https://doi.org/10.1016/j.marpolbul.2017.07.024. ISSN 0025-326X.
8. da Costa, J. P., Duarte, A. C., Rocha-Santos, T. (2017). TAP: Chapter 1-microplastics – occurrence, fate and behaviour in the environment. In Comprehensive analytical chemistry. Edited by Teresa APR-S, Armando CD, Elsevier.
9. Bezirhan Arikan, E., Duygu Ozsoy, H. (2015). A review: investigation of bioplastics. Journal of Civil Engineering and Architecture, 9, 188–192. doi: 10.17265/1934-7359/2015.02.007.
10. Courtney, A., Joel, B., Holly, B. (2009). Proceedings of the International Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris. NOAA Technical Memorandum. Available: https://repository.library.noaa.gov/view/noaa/2509.
11. Patel, M. M., Goyal, B. R., Bhadada, S. V. et al. (2009). Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs, 23, 35–58. doi: 10.2165/0023210-200923010-00003.
12. Cole, M., Lindeque, P., Halsband, C., Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62, 2588–2597. doi: 10.1016/j.marpolbul.2011.09.025.
13. Ng, E. L., Lwanga, E., Eldridge, S. M. et al. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the total environment, 627, 1377–1388. doi: 10.1016/j.scitotenv.2018.01.341.
14. Galloway, T. S., Cole, M., Lewis, C. (2017). Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology & Evolution, 1, Article number: 0116(2017). Available: https://www.nature.com/articles/s41559-017-0116.
15. Rochman, C. M., Browne, M. A., Underwood, A. J. et al. (2016). The ecological impacts of marine debris: unraveling the demonstrated evidence from what is perceived. Ecology. doi: 10.1890/14-2070.1. Available: https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/14-2070.1.
16. Lassen, C., Hansen, S. F., Magnusson, K. et al. (2015). Microplastics: Occurrence, effects and sources of releases to the environment in Denmark. Copenhagen K: Danish Environmental Protection Agency. Available: http://orbit.dtu.dk/files/118180844/Lassen_et_al._2015.pdf.
17. Gigault, J. et al. (2018). Current opinion: What is a nanoplastic? Environmental Pollution, 1, 1–62. doi: 10.1016/j.envpol.2018.01.024.
18. Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605. doi: 10.1016/j.marpolbul.2011.
05.030.
19. Cozar, A., Echevarría, F., Gonzalez-Gordillo, J. I. et al. (2014). Plastic debris in the open ocean. PNAS, 111(28), 10239–10244. doi: 10.1073/pnas.
1314705111.
20. Ter Halle, A., Ladirat, L., Gendre, X. et al. (2016). Understanding the fragmentation pattern of marine plastic debris. Environmental Science and Technology, 50(11), 5668–5675. doi: 10.1021/acs.est.6b00594.
21. Brar, S. K., Verma, M., Tyagi, R. D., Surampalli, R. Y. (2010). Engineered nanoparticles in wastewater and wastewater sludge e evidence and impacts. Waste Management, 30(3), 504–20. doi: 10.1016/j.wasman.2009.10.012.
22. Colvin, V. L. (2003). The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21(10), 1166–1170. doi: 10.1038/nbt875.
23. Ju-Nam, Y., Lead, J. R. (2008). Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Science of the Total Environment, 400(1–3), 396–414. doi: 10.1016/j.scitotenv.2008.06.042.
24. Weinberg, H., Galyean, A., Leopold, M. (2011). Evaluating engineered nanoparticles in natural waters. TrAC Trends in Analytical Chemistry, 30(1), 72–83. doi: 10.1016/j.trac.2010.09.006.
25. Hüffer, T., Praetorius, A., Wagner, S. et al. (2017). Microplastic exposure assessment in aquatic environments: learning from similarities and differences to engineered nanoparticles. Environmental Science and Technology, 51(5), 2499–2507. doi: 10.1021/acs.est.6b04054.
26. Panel on Contaminants in the Food Chain, Wallace, H., Alexander, J., Barregård, L. et. al. (2016). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA Journal, 14(6), 1–30. [4501]. doi: 10.2903/j.efsa.2016.4501.
27. Mendoza, L. M. R., Karapanagioti, H., Álvarez, N. R. (2018). Micro(nanoplastics) in the marine environment: current knowledge and gaps. Current Opinion in Environmental Science & Health, 1, 47–51. doi: 10.1016/j.coesh.2017.11.004.
28. Maryam, M., Dedy, R., Yunizurwam, Y. (2017). Processing of micro-nano bacterial cellulose with hydrolysis method as a reinforcing bioplastic. Journal of Physics: Conference Series, 795(1). doi:10.1088/1742-6596/795/1/012061. Available: https://iopscience.iop.org/article/10.1088/1742-6596/795/1/012061.
29. Wicaksono, R., Syamsu, K., Yuliasih, I., Nasir, M. (2013). Karakteristik nanoserat selulosa dari ampas tapioka dan aplikasinya sebagai penguat film tapioka. Jurnal Teknologi Industri Pertanian, 23(1), 38–45. Available: https://docplayer.info/44398285-Karakteristik-nanoserat-selulosa-dari-ampas-tapioka-dan-aplikasinya-sebagai-penguat-film-tapioka.html.
30. Beucker, S., Marscheider-Weidemann, F. (2007). Potentials and Challenges of Bioplastics – Insights from a German Survey on «Green» Future Markets. Borderstep Institute for Innovation and Sustainability. Available: https://www.borderstep.de/wp-content/uploads/2014/12/beucker_marscheider
_potentials_and_challenges_of_bioplastics_2007.pdf.
31. Report-European Bioplastics, Bioplastic market data. (2017). Berlin. Available: http://www.european-bioplastics.org/market/.
32. Mashek, W. B., Krieger, P., Martin, K. (2016). Bioplastic. Plastic market watch report. A series on economic-demographic-consumer & technology trends in specific plastics end markets, Issue VI. Available: https://www.plasticsportal.net/wa/plasticsEU~ru_RU/function/
conversions:/publish/common/upload/biodegradable_plastics/plastics_market_watch_bioplastics.pdf.
33. Rosenheim, H., De, I., Hyvedemm, S. (2017). Bio plastics market data 2017. Berlin. Available: http://www.european-bioplastics.org/market/.
34. Bio plastics and the Circular Economy (Position of European Bio plastics concerning). (2016). Available: http://european-bioplastics.org.
ЛІТЕРАТУРА
1. Frick A., Stern C., Muralidharan V. Introduction to Plastics. Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA. 2019. Available: https://application.wiley-vch.de/books/sample/3527334114_c01.pdf.
2. Costa J. P. D. Micro- and nanoplastics in the environment: research and policymaking. Current Opinion in Environmental Science and Health. 2018. Vol. 1. P. 12–16. doi: 10.1016/j.coesh.2017.11.002. Available: https://www.sciencedirect.com/science/article/pii/S2468584417300417.
3. Alimi O., Budarz J. F., Hernandez L. M., Tufenkji N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environmental Science and Technology. 2017. Vol. 4. P. 1704–1724. doi: 10.1021/acs.est.7b05559.
4. Rochman C. M., Hoh E., Hentschel B. T., Kaye S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environmental Science and Technology. 2013. Vol. 4, Issue 3. P. 1646–1654. doi: 10.1021/es303700s.
5. Bergmann M., Gutow L., Klages M. Marine anthropogenic litter. Springer International Publishing. 2015. doi: 10.1007/978-3-319-16510-3. Available: https://link.springer.com/book/10.1007/978-3-319-16510-3.
6. da Costa J. P., Santos P. S. M., Duarte A. C., Rocha-Santos T. (Nano) plastics in the environment sources, fates and effects. Science of the Total Environment. 2016. Vol. 1. P. 566–567. doi: 10.1016/j.scitotenv.2016.05.041.
7. Axelsson C., van Sebille E. Prevention through policy: Urban macroplastic leakages to the marine environment during extreme rainfall events. Marine Pollution Bulletin. 2017. Vol. 124, Issue 1. P. 211–227. Available: https://doi.org/10.1016/j.marpolbul.2017.07.024. ISSN 0025-326X.
8. da Costa J. P., Duarte A. C., Rocha-Santos T. TAP: Chapter 1-microplastics – occurrence, fate and behaviour in the environment. In Comprehensive analytical chemistry. Edited by Teresa APR-S, Armando CD, Elsevier. 2017.
9. Bezirhan Arikan E., Duygu Ozsoy H. A review: investigation of bioplastics. Journal of Civil Engineering and Architecture. 2015. Vol. 9. P. 188–192. doi: 10.17265/1934-7359/2015.02.007.
10. Courtney A., Joel B., Holly B. Proceedings of the International Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris. NOAA Technical Memorandum. 2009. Available: https://repository.library.noaa.gov/view/noaa/2509.
11. Patel M. M., Goyal B. R., Bhadada S. V. et al. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs. 2009. Vol. 23. P. 35–58. doi: 10.2165/0023210-200923010-00003.
12. Cole M., Lindeque P., Halsband C., Galloway T. S. Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin. 2011. Vol. 62. P. 2588–2597. doi: 10.1016/j.marpolbul.2011.09.025.
13. Ng E. L., Lwanga E., Eldridge S. M. et al. An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the total environment. 2018. Vol. 627. P. 1377–1388. doi: 10.1016/j.scitotenv.2018.01.341.
14. Galloway T. S., Cole M., Lewis C. Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology & Evolution. 2017. Vol. 1. Article number: 0116(2017). Available: https://www.nature.com/articles/s41559-017-0116.
15. Rochman C. M., Browne M. A., Underwood A. J. et al. The ecological impacts of marine debris: unraveling the demonstrated evidence from what is perceived. Ecology. 2016. doi: 10.1890/14-2070.1. Available: https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/14-2070.1.
16. Lassen C., Hansen S. F., Magnusson K. et al. Microplastics: Occurrence, effects and sources of releases to the environment in Denmark. Copenhagen K: Danish Environmental Protection Agency. 2015. Available: http://orbit.dtu.dk/files/118180844/Lassen_et_al._2015.pdf.
17. Gigault J. et al. Current opinion: What is a nanoplastic? Environmental Pollution. 2018. Vol. 1. P. 1–62. doi: 10.1016/j.envpol.2018.01.024.
18. Andrady, A. L. Microplastics in the marine environment. Marine Pollution Bulletin. 2011. Vol. 62, Issue 8. P. 1596–1605. doi: 10.1016/
j.marpolbul.2011.05.030.
19. Cozar A., Echevarría F., Gonzalez-Gordillo J. I. et al. Plastic debris in the open ocean. PNAS. 2014. Vol. 111, Issue 28. P. 10239–10244. doi: 10.1073/pnas.1314705111.
20. Ter Halle A., Ladirat L., Gendre X. et al. Understanding the fragmentation pattern of marine plastic debris. Environmental Science and Technology. 2016. Vol. 50, Issue 11. P. 5668–5675. doi: 10.1021/acs.est.6b00594.
21. Brar S. K., Verma M., Tyagi R. D., Surampalli R. Y. Engineered nanoparticles in wastewater and wastewater sludge e evidence and impacts. Waste Management. 2010. Vol. 30, Issue 3. P. 504–20. doi: 10.1016/j.wasman.2009.10.012.
22. Colvin V. L. The potential environmental impact of engineered nanomaterials. Nature Biotechnology. 2003. Vol. 21, Issue 10. P. 1166–1170. doi: 10.1038/nbt875.
23. Ju-Nam Y., Lead J. R. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Science of the Total Environment. 2008. Vol. 400, Issue 1–3. P. 396–414. doi: 10.1016/j.scitotenv.2008.06.042.
24. Weinberg H., Galyean A., Leopold M. Evaluating engineered nanoparticles in natural waters. TrAC Trends in Analytical Chemistry. 2011. Vol. 30, Issue 1. P. 72–83. doi: 10.1016/j.trac.2010.09.006.
25. Hüffer T., Praetorius A., Wagner S. et al. Microplastic exposure assessment in aquatic environments: learning from similarities and differences to engineered nanoparticles. Environmental Science and Technology. 2017. Vol. 51, Issue 5. P. 2499–2507. doi: 10.1021/acs.est.6b04054.
26. Panel on Contaminants in the Food Chain, Wallace H., Alexander J., Barregård L. et. al. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA Journal. 2016. Vol. 14, Issue 6. P. 1–30. [4501]. doi: 10.2903/j.efsa.2016.4501.
27. Mendoza L. M. R., Karapanagioti H., Álvarez N. R. Micro(nanoplastics) in the marine environment: current knowledge and gaps. Current Opinion in Environmental Science & Health. 2018. Vol. 1. P. 47–51. doi: 10.1016/j.coesh.2017.11.004.
28. Maryam M., Dedy R., Yunizurwam Y. Processing of micro-nano bacterial cellulose with hydrolysis method as a reinforcing bioplastic. Journal of Physics: Conference Series. 2017. Vol. 795, Issue 1. doi:10.1088/1742-6596/795/1/012061. Available: https://iopscience.iop.org/article/10.1088/1742-6596/795/1/012061.
29. Wicaksono R., Syamsu K., Yuliasih I., Nasir M. Karakteristik nanoserat selulosa dari ampas tapioka dan aplikasinya sebagai penguat film tapioka. Jurnal Teknologi Industri Pertanian. 2013. Vol. 23, Issue 1. P. 38–45. Available: https://docplayer.info/44398285-Karakteristik-nanoserat-selulosa-dari-ampas-tapioka-dan-aplikasinya-sebagai-penguat-film-tapioka.html.
30. Beucker S., Marscheider-Weidemann F. Potentials and Challenges of Bioplastics – Insights from a German Survey on «Green» Future Markets. Borderstep Institute for Innovation and Sustainability. 2007. Available: https://www.borderstep.de/wp-content/uploads/2014/12/beucker_marscheider
_potentials_and_challenges_of_bioplastics_2007.pdf.
31. Report-European Bioplastics, Bioplastic market data. Berlin. 2017. Available: http://www.european-bioplastics.org/market/.
32. Mashek W. B., Krieger P., Martin K. Bioplastic. Plastic market watch report. A series on economic-demographic-consumer & technology trends in specific plastics end markets. 2016. Issue VI. Available: https://www.plasticsportal.net/wa/plasticsEU~ru_RU/function/conversions:/
publish/common/upload/biodegradable_plastics/plastics_market_watch_bioplastics.pdf.
33. Rosenheim H., De I., Hyvedemm S. Bio plastics market data 2017. Berlin. 2017. Available: http://www.european-bioplastics.org/market/.
34. Bio plastics and the Circular Economy (Position of European Bio plastics concerning). 2016. Available: http://european-bioplastics.org.