Removing arsenic by food-processing waste (Zizyphus jujuba seeds) and study on its adsorptive properties

P. Ziarati, B. Farasati Far, E. Mashayekhi, B. Sawicka

 

DOI: 10.5281/zenodo.2604648

Received: 2 March 2019

Accepted: 23 March 2019

Published online: 25 March 2019

 

 

ABSTRACT

Research was carried out to remove arsenic from synthetic AMD, raising the pH of the solution and using waste material for food processing by adsorbing arsenic to recover impurities. Arsenite can be quickly converted into arsenate, the more thermodynamically stable. Attention was paid to biomaterials, which are by-products or agricultural waste. Zizyphus seeds were used for this purpose as cheaper and often available food waste materials, due to the potential sorption capacity of arsenic. In order to clean the soils in contaminated towns and mining districts, establish its adsorption potential and enable food production in these areas, collective soil samples were taken from a depth of 0 – 40 cm from the area of 5 cities and 10 sub-regions of Anguran, province Zanjan in Iran. In the trials, the amount of As(III) and/or arsenate(V) in the soil was evaluated. Their content was tested using ICP-MS. The adsorption process was significantly dependent on adsorbent concentrations and also time. The efficiency and the complicated mechanism of the uptake of Arsenic ions onto the soils depend on the concentration of cellular surface of the Jujube seed powder and also the time of being interaction. 10 % of Jujube seed attained maximum removal all Arsenic ions in this study. Significant differences in decreasing toxic metal were observed among the time of 48 hours and 1 week in all concentrations of bio-adsorbent. The maximum adsorption of toxic metals varied between 80 and 90 % depending on the contact time, stirring action and concentrations of studied bio-adsorbent Ziziphus jujuba seeds. With higher biomass doses the removal efficiency of As was higher even at the same time of being contact. Authors suggest more studies on the mechanism in the next projects and utilizing other dead bio-masses.

 

Keywords: Zizyphus jujube; arsenic; bio-adsorption; food waste.

 

REFERENCES

1. Dushenkov, V., Kumar, P. N., Motto, H., Raskin, I. (1995). Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environmental science & technology, 29(5), 1239–1245.

2. Kumar, A., Tripathi, Y. C., Singh, S., Tripathi, G. (2003). Metal pollutants in living environment. Threat and Challenges [in:] Metal Pollutants in Living Environment. Editor: Arvind Kumar. First Edition, Publisher: Daya Publishing House, New Delhi: 1–20. ISBN 81-7035-305-X.

3. Haloi, N., Sarma, H. P. (2011). Ground water quality assessment of some parts of brahmaputra flood plain in Barpeta district, Assam with special focus on Fluoride, Nitrate, Sulphate and Iron analysis. International Journal of ChemTech Research, 3(3), 1302–1308.

4. Halnor, S., Ubale, M. (2013). Adsorption of heavy metals: a review. Journal of Applicable Chemistry, 2(3), 475–485. Available: http://www.
joac.info/ContentPaper/2013/2-11.pdf.

5. Halnor, S. (2015). Removal of heavy metals from wastewater: a review. International journal of application or innovation in engineering & management, 4(10), 19–22.

6. Sud, D., Mahajan, G., Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–a review. Bioresource technology, 99(14), 6017–6027.

7. Denek, N., Can, A. (2006). Feeding value of wet tomato pomace ensiled with wheat straw and wheat grain for Awassi sheep. Small Ruminant Research, 65(3), 260–265.

8. Pap, N., Pongrácz, E., Myllykoski, L., Keiski, R. (2004). Waste minimization and utilization in the food industry: Processing of arctic berries, and extraction of valuable compounds from juice-processing by-products. In Proceedings of the Waste Minimization and Resources Use Optimization Conference (Vol. 10, pp. 159–168). Oulu: Oulu University Press.

9. Grasser, L. A., Fadel, J. G., Garnett, I., DePeters, E. J. (1995). Quantity and economic importance of nine selected by-products used in California dairy rations. Journal of Dairy Science, 78(4), 962–971.

10. National Research Council. (2007). NRC. 2001. Nutrient requirements of dairy cattle, 7, 381.

11. Oltjen, R. R., Rumsey, T. S., Fontenot, J. P. et al. (1977). Supplementation of apple pomace with nonprotein nitrogen for gestating beef cows. III. Metabolic parameters. Journal of animal science, 45(3), 532–542.

12. Yao, Z., Li, J., Xie, H., Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. Procedia Environmental Sciences, 16, 722–729.

13. Fayiga, A. O., Saha, U. K. (2016). Arsenic hyperaccumulating fern: Implications for remediation of arsenic contaminated soils. Geoderma, 284, 132–143.

14. Smith, E., Naidu, R., Alston, A. M. (2002). Chemistry of inorganic arsenic in soils. Journal of Environmental Quality, 31(2), 557–563.

15. Davis, A., Sherwin, D., Ditmars, R., Hoenke, K. A. (2001). An analysis of soil arsenic records of decision, 35(12), 2401–2406.

16. NHMRC, N. (2011). Australian drinking water guidelines. Commonwealth of Australia.

17. Bowell, R. J., Alpers, C. N., Jamieson, H. E. et al. (2014). The environmental geochemistry of arsenic – an overview. Reviews in Mineralogy and Geochemistry, 79(1), 1–16.

18. Hopenhayn, C. (2006). Arsenic in drinking water: impact on human health. Elements, 2(2), 103–107.

19. Matschullat, J. (2000). Arsenic in the geosphere – a review. Science of the Total Environment, 249(1–3), 297–312.

20. Grasser, L. A., Fadel, J. G., Garnett, I., DePeters, E. J. (1995). Quantity and economic importance of nine selected by-products used in California dairy rations. Journal of Dairy Science, 78(4), 962–971.

21. Charlet, L., Polya, D. A. (2006). Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster. Elements, 2(2), 91–96.

22. Chakraborty, S., Nath, B., Chatterjee, D., Charlet, L. (2014). Retardation of arsenic transport by oxidized Holocene aquifer sediments of West Bengal, India. Journal of hydrology, 518, 460–463.

23. Han, F. X., Su, Y., Monts, D. L. et al. (2003). Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften, 90(9), 395–401.

24. Hebbard, E. R., Wilson, S. A., Jowitt, S. M. et al. (2017). Regrowth of arsenate–sulfate efflorescences on processing plant walls at the Ottery arsenic–tin mine, New South Wales, Australia: Implications for arsenic mobility and remediation of mineral processing sites. Applied geochemistry, 79, 91–106.

25. Ziarati, P., Alaedini, S. (2014). The phytoremediation technique for cleaning up contaminated soil by Amaranthus sp. Journal of Analytical Toxicology, 4(208), 2161–0525. doi: 10.4172/2161-0525.1000208.

26. Amini-Nouri, F., Ziarati, P. (2015). Chemical composition of native hazelnut (Corylus avellana L.) varieties in Iran, association with ecological conditions. Bioscience & Biotechnology Research Asia, 12, 2053–2060.

27. Ziarati, P., Tosifi, S. (2014). Comparing some physical and chemical properties of green olive (Olea Europea L.) in iran association with ecological conditions. International Journal of Plant, Animal and Environmental Sciences, 4(2), 519–528.

28. Ziarati, P., Namvar, S., Sawicka, B. (2018). Heavy metals bio-adsorption by Hibiscus sabdariffa L. from contaminated water. Technogenic and Ecological Safety, 4(2/2018), 22–32. doi: 10.5281/zenodo.1244568.

29. Ukoh, S. N. B., Akinola, M. O., Njoku, K. L. (2018). Comparative study on the growth response and remediation potential of Panicum maximum and Axonopus compressus in lead contaminated soil. Technogenic and ecological safety, 5(1/2019), 3–12. doi: 10.5281/zenodo.2247129.

30. Ahmadi, M., Ziarati, P., Manshadi, M. et al. (2013). The phytoremidiation technique for cleaning up contaminated soil by Geranium (Pelargonium Roseum). International Journal of Farming and Allied Sciences, 2(15), 477–481.

31. Manshadi, M., Ziarati, P., Ahmadi, M., Fekri, K. (2013). Greenhouse study of cadmium and lead phytoextraction by five pelargonium spices. International Journal of Farming and Allied Sciences, 2(18), 665–669.

32. Hadiani, M. R., Dezfooli-Manesh, S., Shoeibi, S. et al. (2015). Trace elements and heavy metals in mineral and bottled drinking waters on the Iranian market. Food Additives & Contaminants: Part B, 8(1), 18–24.

33. Tavakoli-Hosseinabady, B., Ziarati, P., Ballali, E., Umachandran, K. (2018). Detoxification of heavy metals from leafy edible vegetables by agricultural waste: apricot pit shell. Journal of Environmental & Analytical Toxicology, 8(548), 2161–0525. doi:10.4172/2161-0525.100054.

34. Herman, D. Z. (2006). Tinjauan terhadap tailing mengandung unsur pencemar Arsen (As), Merkuri (Hg), Timbal (Pb), dan Kadmium (Cd) dari sisa pengolahan bijih logam. Indonesian Journal on Geoscience, 1(1), 31–36.

35. Abumaizar, R. J., Smith, E. H. (1999). Heavy metal contaminants removal by soil washing. Journal of Hazardous Materials, 70(1–2), 71–86.

36. Clancy, T. M., Hayes, K. F., Raskin, L. (2013). Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water. Environmental science & technology, 47(19), 10799–10812.

37. Malik, A. H., Khan, Z. M., Mahmood, Q. et al. (2009). Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries. Journal of hazardous materials, 168(1), 1–12.

38. National Health and Medical Research Council. (2011). Australian Drinking Water Guidelines Paper 6: National Water Quality Management Strategy. Available: https://www.nhmrc.gov.au/sites/default/files/documents/NHMRC%20ADWG%206%20-%20Version%203.5%20-%20Proof%203.pdf.

39. Skoczyńska, A. (2018). Arsenic in the human environment (Arsen w środowisku człowieka). Medycyna Środowiskowa – Environmental Medicine, 21(1), 1–19. (in Polish). doi: 10.19243/2018101.

40. Skoczyńska, A., Wojakowska, A., Turczyn, B. et al. (2018). Health effects of arsenic environmental pollution (Zdrowotne skutki zanieczyszczenia środowiska arsenem). Medycyna Środowiskowa - Environmental Medicine, 21(3), 34–42. (in Polish). doi: 10.19243/2018305.

41. Leist, M., Casey, R. J., Caridi, D. (2000). The management of arsenic wastes: problems and prospects. Journal of Hazardous Materials, 76(1), 125–138.

42. Abdi, O., Kazemi, M. (2015). A review study of biosorption of heavy metals and comparison between different biosorbents. Journal of Materials and Environmental Science, 6(5), 1386–1399.

43. Motaghi, M., Ziarati, P. (2016). Adsorptive removal of cadmium and lead from oryza sativa rice by banana peel as bio-sorbent. Biomedical and Pharmacology Journal, 9(2), 739–749.

44. Ziarati, P., Mostafidi, M., Shirkhan, F., Zahedi, M. T. (2018). Analysis removal  methods  of toxic  heavy metals  using  bio-adsorbs. Technogenic and Ecological Safety, 4(2/2018), 62–76. doi: 10.5281/zenodo.1402587.

 

ЛІТЕРАТУРА

1. Dushenkov V., Kumar P. N., Motto H., Raskin I. Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environmental science & technology. 1995. Vol. 29, Issue 5. P. 1239–1245.

2. Kumar A., Tripathi Y. C., Singh S., Tripathi G. Metal pollutants in living environment. Threat and Challenges [in:] Metal Pollutants in Living Environment. Editor: Arvind Kumar. First Edition, Publisher: Daya Publishing House, New Delhi. 2003. P. 1–20. ISBN 81-7035-305-X.

3. Haloi N., Sarma H. P. Ground water quality assessment of some parts of brahmaputra flood plain in Barpeta district, Assam with special focus on Fluoride, Nitrate, Sulphate and Iron analysis. International Journal of ChemTech Research. 2011. Vol. 3, Issue 3. P. 1302–1308.

4. Halnor S., Ubale M. Adsorption of heavy metals: a review. Journal of Applicable Chemistry. 2013. Vol. 2, Issue 3. P. 475–485. Available: http://www.joac.info/ContentPaper/2013/2-11.pdf.

5. Halnor S. Removal of heavy metals from wastewater: a review. International journal of application or innovation in engineering & management. 2015. Vol. 4, Issue 10. P. 19–22.

6. Sud D., Mahajan G., Kaur M. P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–a review. Bioresource technology. 2008. Vol. 99, Issue 14. P. 6017–6027.

7. Denek N., Can A. Feeding value of wet tomato pomace ensiled with wheat straw and wheat grain for Awassi sheep. Small Ruminant Research. 2006. Vol. 65, Issue 3. P. 260–265.

8. Pap N., Pongrácz E., Myllykoski L., Keiski R.  Waste minimization and utilization in the food industry: Processing of arctic berries, and extraction of valuable compounds from juice-processing by-products. In Proceedings of the Waste Minimization and Resources Use Optimization Conference. 2004. Vol. 10. P. 159–168. Oulu: Oulu University Press.

9. Grasser L. A., Fadel J. G., Garnett I., DePeters E. J. Quantity and economic importance of nine selected by-products used in California dairy rations. Journal of Dairy Science. 1995. Vol. 78, Issue 4. P. 962–971.

10. National Research Council. NRC. 2001. Nutrient requirements of dairy cattle. 2007. Vol. 7. 381 p.

11. Oltjen R. R., Rumsey T. S., Fontenot J. P. et al. Supplementation of apple pomace with nonprotein nitrogen for gestating beef cows. III. Metabolic parameters. Journal of animal science. 1977. Vol. 45, Issue 3. P. 532–542.

12. Yao Z., Li J., Xie H., Yu C. Review on remediation technologies of soil contaminated by heavy metals. Procedia Environmental Sciences. 2012. Vol. 16. P. 722–729.

13. Fayiga A. O., Saha U. K. Arsenic hyperaccumulating fern: Implications for remediation of arsenic contaminated soils. Geoderma. 2016. Vol. 284. P. 132–143.

14. Smith E., Naidu R., Alston A. M. Chemistry of inorganic arsenic in soils. Journal of Environmental Quality. 2002. Vol. 31, Issue 2. P. 557–563.

15. Davis A., Sherwin D., Ditmars R., Hoenke K. A. An analysis of soil arsenic records of decision. 2001. Vol. 35, Issue 12. P. 2401–2406.

16. NHMRC N. Australian drinking water guidelines. Commonwealth of Australia. 2011.

17. Bowell R. J., Alpers C. N., Jamieson H. E. et al. The environmental geochemistry of arsenic – an overview. Reviews in Mineralogy and Geochemistry. 2014. Vol. 79, Issue 1. P. 1–16.

18. Hopenhayn C. Arsenic in drinking water: impact on human health. Elements. 2006. Vol. 2, Issue 2. P. 103–107.

19. Matschullat J. Arsenic in the geosphere – a review. Science of the Total Environment. 2000. Vol. 249, Issue 1–3. P. 297–312.

20. Grasser L. A., Fadel J. G., Garnett I., DePeters E. J. Quantity and economic importance of nine selected by-products used in California dairy rations. Journal of Dairy Science. 1995. Vol. 78, Issue 4. P. 962–971.

21. Charlet L., Polya D. A. Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster. Elements. 2006. Vol. 2, Issue 2. P. 91–96.

22. Chakraborty S., Nath B., Chatterjee D., Charlet L. Retardation of arsenic transport by oxidized Holocene aquifer sediments of West Bengal, India. Journal of hydrology. 2014. Vol. 518. P. 460–463.

23. Han F. X., Su Y., Monts D. L. et al. Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften. 2003. Vol. 90, Issue 9. P. 395–401.

24. Hebbard E. R., Wilson S. A., Jowitt S. M. et al. Regrowth of arsenate–sulfate efflorescences on processing plant walls at the Ottery arsenic–tin mine, New South Wales, Australia: Implications for arsenic mobility and remediation of mineral processing sites. Applied geochemistry. 2017. Vol. 79. P. 91–106.

25. Ziarati P., Alaedini S. The phytoremediation technique for cleaning up contaminated soil by Amaranthus sp. Journal of Analytical Toxicology. 2014. Vol. 4, Issue 208. P. 2161–0525. doi: 10.4172/2161-0525.1000208.

26. Amini-Nouri F., Ziarati P. Chemical composition of native hazelnut (Corylus avellana L.) varieties in Iran, association with ecological conditions. Bioscience & Biotechnology Research Asia. 2015. Vol. 12. P. 2053–2060.

27. Ziarati P., Tosifi S. Comparing some physical and chemical properties of green olive (Olea Europea L.) in iran association with ecological conditions. International Journal of Plant, Animal and Environmental Sciences. 2014. Vol. 4, Issue 2. P. 519–528.

28. Ziarati P., Namvar S., Sawicka B. Heavy metals bio-adsorption by Hibiscus sabdariffa L. from contaminated water. Technogenic and Ecological Safety. 2018. Vol. 4(2/2018). P. 22–32. doi: 10.5281/zenodo.1244568.

29. Ukoh S. N. B., Akinola M. O., Njoku K. L. Comparative study on the growth response and remediation potential of Panicum maximum and Axonopus compressus in lead contaminated soil. Technogenic and ecological safety. 2018. Vol. 5(1/2019). P. 3–12. doi: 10.5281/zenodo.2247129.

30. Ahmadi M., Ziarati P., Manshadi M. et al. The phytoremidiation technique for cleaning up contaminated soil by Geranium (Pelargonium Roseum). International Journal of Farming and Allied Sciences. 2013. Vol. 2, Issue 15. P. 477–481.

31. Manshadi M., Ziarati P., Ahmadi M., Fekri K. Greenhouse study of cadmium and lead phytoextraction by five pelargonium spices. International Journal of Farming and Allied Sciences. Vol. 2, Issue 18. P. 665–669.

32. Hadiani M. R., Dezfooli-Manesh S., Shoeibi S. et al. Trace elements and heavy metals in mineral and bottled drinking waters on the Iranian market. Food Additives & Contaminants: Part B. 2015. Vol. 8, Issue 1. P. 18–24.

33. Tavakoli-Hosseinabady B., Ziarati P., Ballali E., Umachandran K. Detoxification of heavy metals from leafy edible vegetables by agricultural waste: apricot pit shell. Journal of Environmental & Analytical Toxicology. 2018. Vol. 8, Issue 548. P. 2161–0525. doi:10.4172/2161-0525.100054.

34. Herman D. Z. Tinjauan terhadap tailing mengandung unsur pencemar Arsen (As), Merkuri (Hg), Timbal (Pb), dan Kadmium (Cd) dari sisa pengolahan bijih logam. Indonesian Journal on Geoscience. 2006. Vol. 1, Issue 1. P. 31–36.

35. Abumaizar R. J., Smith E. H. Heavy metal contaminants removal by soil washing. Journal of Hazardous Materials. 1999. Vol. 70, Issue 1–2. P. 71–86.

36. Clancy T. M., Hayes K. F., Raskin L. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water. Environmental science & technology. 2013. Vol. 47, Issue 19. P. 10799–10812.

37. Malik A. H., Khan Z. M., Mahmood Q. et al. Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries. Journal of hazardous materials. 2009. Vol. 168, Issue 1. P. 1–12.

38. National Health and Medical Research Council. (2011). Australian Drinking Water Guidelines Paper 6: National Water Quality Management Strategy. Available: https://www.nhmrc.gov.au/sites/default/files/documents/NHMRC%20ADWG%206%20-%20Version%203.5%20-%20Proof%203.pdf.

39. Skoczyńska A. Arsenic in the human environment (Arsen w środowisku człowieka). Medycyna Środowiskowa – Environmental Medicine. 2018. Vol. 21, Issue 1. P. 1–19. (in Polish). doi: 10.19243/2018101.

40. Skoczyńska A., Wojakowska A., Turczyn B. et al. Health effects of arsenic environmental pollution (Zdrowotne skutki zanieczyszczenia środowiska arsenem). Medycyna Środowiskowa - Environmental Medicine. 2018. Vol. 21, Issue 3. P. 34–42. (in Polish). doi: 10.19243/2018305.

41. Leist M., Casey R. J., Caridi D. The management of arsenic wastes: problems and prospects. Journal of Hazardous Materials. 2000. Vol. 76, Issue 1. P. 125–138.

42. Abdi O., Kazemi M. A review study of biosorption of heavy metals and comparison between different biosorbents. Journal of Materials and Environmental Science. 2015. Vol. 6, Issue 5. P. 1386–1399.

43. Motaghi M., Ziarati P. Adsorptive removal of cadmium and lead from oryza sativa rice by banana peel as bio-sorbent. Biomedical and Pharmacology Journal. 2016. Vol. 9, Issue 2. P. 739–749.

44. Ziarati P., Mostafidi M., Shirkhan F., Zahedi M. T. Analysis removal  methods  of toxic  heavy metals  using  bio-adsorbs. Technogenic and Ecological Safety. 2018. Vol. 4(2/2018). P. 62–76. doi: 10.5281/zenodo.1402587.