Taking into account the emissions of CO2 as a toxic pollutant and as a greenhouse gas in fuel and ecological complex criteria-based assessment of diesel-generator operation process

O. Kondratenko


DOI: 10.5281/zenodo.3558960

Received: 10 September 2019

Accepted: 24 October 2019

Published: 29 November 2019




In the article, such notions as “potentially hazardous object”, “high threat object” and “potentially hazardous and critically important object” are articulated and categorized. Forms are given, with which the anthropogenic risks are shown for normal operational use of potentially hazardous objects and high threat objects, as well as during hazardous anthropogenic phenomena. The class division of main potentially hazardous and critically important objects is provided, including the threat of anthropogenic emergencies with the short characteristics for every class. An outline classification of potentially hazardous and critically important objects is given for first two stages, including the numeric serial encoding of every group category. Such notions as “explosion hazardous” and “explosion-proof” are analyzed. The analysis of the parameters of anthropogenic effects on potentially hazardous and critically important object potentially hazardous and critically important object is often multifactorial and is associated with the solution of uncertainties. This requires a systematic approach and the involvement of a suitable mathematical apparatus. It should be noted that due to the incompleteness of the knowledge base and the database available today, which are included in the calculations, the quantitative results of the potentially hazardous and critically important object analysis can have considerable uncertainty.

The practical implementation of the given classification of critically important objects, gives opportunity for controlling, forecasting and managing of anthropogenic risk level. The terms of fuzziness of critically important objects ranging were analyzed with using of geometrical convolution criteria method. A classification which takes into account and partly reduces the fuzziness of ranging is offered.

The method of analysis of various types of potentially hazardous and critically important object can be used to evaluate possible emergencies with subsequent analysis of damage caused by man-made accidents and natural disasters.

Key words: classification, threats, potentially hazardous object, high threat object, critically important object, risks, emergencies.



1. Vambol S.O., Strokov O.P., Vambol V.V., Kondratenko O.M. (2015). Modern methods for increasing of ecological safety of power plants ex­ploitation process: Monograph. Kharkiv. Publ. Style-Izdat. 212 p. URL: http://repositsc.nuczu.edu.ua/handle/123456789/3529.

2. Kon­dratenko O., Mi­shchen­ko I., Cher­no­bay G., Derkach Yu., Suchikova Ya. (2018). Criteria based assessment of the level of eco­lo­gical safety of ex­plo­ita­tion of electric ge­ne­rating po­wer plant that consumes bio­fuels. Bo­ok of Papers of 2018 IEEE 3rd Interna­tional Interna­tional Con­fe­ren­ce on Intelligent Energy and Po­wer Systems (IEPS–2018) (10–14 Sep­tember 2018). Khar­kiv. NTU “KhPI”. pp. 185–189. DOI: 10.1109/IEPS.2018.8559570

3. Kondratenko O.M. (2018). Selection of criterial appa­ra­tus for complex assess­ment of ecological sa­fety level of ex­ploitation process of power plants. Tech­no­genic and Eco­lo­gical Sa­fety. Issue 3 (1/2018). P. 75–84. DOI: http://doi.org/10.5281/zenodo.1182858. URL: http://repositsc.nuczu. edu.ua/handle/123456789/36

4. Parsadenov I.V. (2003). Improving the qua­li­ty and com­pe­titive­ness of diesel engines based on complex fuel and eco­logical crite­ria: Mo­no­graph. Kharkiv. Publ. Center NTU “KhPI”. 244 p.

5. Kondratenko O.M. (2019). Metrolo­gi­cal aspects of complex crite­ria-based as­sessment of ecolo­gi­cal safety level of exploita­tion of recipro­cating en­gines of power plants : Monograph. Kharkiv. Publ. Style-Izdat. 532 p.

6ISO 8178-4:2017 Reciprocating internal combustion engines – Exhaust emission measurement – Part 4: Test cycles for different engine appli­cations (2017). 237 p. URL: https://www.iso.org/standard/65278.html.

7Efros V.V. at al. (1976). Diesel engines with air cooling of Vladimir tractor plant. Moscow. Publ. Mashinistroyeniye. 277 p.

8. Kon­drat­en­ko O.M., Strokov O.P., Vam­bol S.O., Av­ra­me­n­ko A.M. (2015). Ma­the­matical model of efficien­cy of di­esel particu­la­te matter filter. Sci­entific Bulle­tin of NMU. Is­sue 6 (150). P. 55–61. URL: http://repositsc.nuczu.edu.ua/handle/123456789/2227.

9. Vam­­bol S., Vambol V., Kon­dra­ten­ko O., Su­chi­kova Y.Huren­ko O. (2017). Assess­ment of im­pro­vement of eco­lo­gi­cal safety of power pla­nts by arra­n­­ge­ment of pol­lu­tants ne­u­­tra­lization system. Eastern-Eu­ro­pean Journal of En­terprise Techno­lo­gies. № 3/10 (87). P. 63–73. DOI: 10.15587/ 1729-4061.2017.102314. URL: http://journals.uran.ua/eejet/article/view File/102314/100169.

10. Dha­had H.A.,  Alawee W.H., Marchenko A., Klets D., Akimov O. (2018). Evalu­a­tion of power indicators of the automobile engine. Inter­na­tional Journal of Engineering and Technology. No 7(4.3). P. 130–134. DOI: 10.14419/ijet.v7i4.3.19722.

11. Parsadanov I.V., Sakhnenko N.D., Ved’ M.V., Rykova I.V., Khyzhniak V.A., Karakurkchi A.V., Goro­khivskiy A.S. (2017). Increasing the efficiency of intra-cylinder cata­ly­sis in die­sel engines. Voprosy Khimii i Khimicheskoi Tek­hnologii. No 6. P. 75–81.

12. Samoilenko D., Marchenko A., Prokho­ren­ko A. (2016). An alternative method of variable geometry turbine adjustment: A compa­ra­tive eva­lu­ation of alternative method and nozzle ring adjust­ment. Pro­ceedings of 20th International Conference Tran­sport Means 2016. Issue 2. P. 517–521.

13. Sa­mo­i­lenko D., Mar­che­n­ko A., Cho H.M. (2017). Improvement of torque and power characteris­tics of V-type diesel engine applying new de­sign of Variable geometry tur­bocharger (VGT). Journal of Mechanical Science and Tech­nology. Vol. 31, Issue 10. P. 5021–5027. DOI: 10.1007/ s12206-017-0950-2.

14. Vambol S., Vambol V., Kondratenko O., Koloskov V., Suchikova Y. (2018). Substantiation of ex­pedience of application of high-temperature utilization of used tires for liquefied me­thane production. Jo­urnal of Achievements in Ma­terials and Manufacturing En­gi­neering. Vol. 87. Issue 2. P. 77–84. DOI: 10. 5604/01.3001.0012.2830.

15. Vambol S., Vam­bol V. Sobyna V., Kolos­kov V., Poberezhna L. (2018). Investigation of the energy ef­ficiency of waste utilization te­chnology, with considering the use of low-temperature sepa­ration of the resulting gas mixtures. Energetika. Vol 64. No 4 (2018). P. 186–195. DOI: https://doi. org/10.6001/energetika.v64i4.3893.

16. Kustov M.V., Ka­lu­gin V.D., Tutunik V.V., Tarakhno O.V. (2019). Physicochemical principles of the techno­lo­gy of modified pyrotechnic com­po­sitions to reduce the che­mical pollution of the atmosphere. Voprosy Khimii i Khi­micheskoi Tekhnologii. No. 1 (2019). P. 92–99. DOI: 10.32434/0321-4095-2019-122-1-92-99.

17. Pospelov B., Rybka E., Meleshchenko R., Gornostal S., Shcherbak S. (2017). Results of experimental research into correlations between ha­zardous factors of ignition of materials in premises. EasternEuropean Journal of Enterprise Technologies. 6 (10-90). P. 50-56. DOI: 10.15587/1729-4061.2017.117789.

18. Pospelov B., Rybka E., Melesh­che­n­ko R., Boro­dych P., Gornostal S. (2019). Deve­lopment of the method for rapid detection of hazardous at­mo­spheric pollution of cities with the help of recurrence me­a­sures. Eastern-European Journal of Enterprise Technologies. Vol. 1, No 10 (97). P. 29–35. DOI: doi.org/10.15587/1729-4061.2019.155027.

19. Pospelov B., Andronov V., Rybka E., Skliarov S. (2017). Research into dynamics of setting the threshold and a probability of ignition detec­tion by selfadjusting fire detectors. EasternEuropean Journal of Enterprise Technologies. 5 (9-89), P. 43–48. DOI: 10.15587/1729-4061.2017.110092.

20. GOST 30494-2011. Residential and public buildings. Indoor microclimate parameters (2013). Moscow. Publ. Standartinform. 15 p.

21. Sorokin P. (2015). How environmental standards drive car industry progress. Internet-issue «Za rulem» [Electronic resource]. Date of publ. 03.09. 2015. URL: https://www.zr.ru/content/articles/809243-kak-ekologicheskie-normy-dvigayut-progress-avtoproma.

22. Kyoto protocol to the United Nations framework convention on cli­ma­te change. Official text in English (1998) [Electronic resource]. 20 p. URL: http://unfccc.int/resource/docs/convkp/kpeng.pdf.

23. Andrushchenko S. (2009). Kyoto Protocol gathered to renew [Electronic resource]. News portal of Ukraine Delo.ua. Date of publ 08.12.2009. URL: https://delo.ua/econonomyandpoliticsinukraine/kiotskij-protokol-sobralis-pro-134967.

24. Kanilo P.M., Bey I.S., Rovensky O.I. (2000). Automobile and environment. Kharkiv. Publ. Prapor. 304 p.

25. Dyachenko V.G. (2001).  Methodical instructions for term paper: Calculation of working processes in internal combustion engines. Kharkiv. Publ. KhNADU. 34 p.

26. Parsadenov I.V., Vasiliyev I.P. (2013). Determination of diesel particulate matter particulate matter composition. Internal combustion engines. № 2. P. 97 – 101.

27. Ugnefuk A.A. (2012). Experimental studies of the structure and composition of particulate matter in the exhaust gases of a vortex chamber diesel : diss. Cand. tech. sciences. spec.: 05.04.02 – heat engines. Barnaul. GBOU VPO «Altai State Technical University named after I.I. Polzunov». 163 p.

28. Berdin V.H., Gritsevich I.G., Kokorin A.O., Fedorov Ju.N. (2004). Greenhouse gases are a global environmental resource. Reference guide. Moscow. Publ. WWF of Russia. 137 p.

29. CDIAC Carbon Dioxide Information Analysis Center of Berkeley Lab & U.S. Department of Energy [Electronic resource]. URL: https://cdiac.ess-dive.lbl.gov.

30. Mirzoev V., Pishchuk E. (2010). Gasoline and ethanol - world perspectives. Production methods, standards, overview of the global market and fuel producers [Electronic resource]. Internet-journal «Local Government Issues». № 20. P. 10-1–10-6. URL: http://www.samoupravlenie.ru/40-10.php.

31. Bystrov A.S., Varankiv V.V., Vilensky M.A. at al. (1986). Temporary standard methodology for determining the economic efficiency of environmental protection measures and assessing the economic damage caused to the national economy by environmental pollution. Moscow. Publ. Ekonomika. 96 p.

32. Shvedun V.O. (2015). Experience of EU countries in ensuring public administration of advertising activity. Actual Problems of Economics. 168 (6), art. no. A084. P. 84–90.