Koziy Ivan

Sumy State University, Sumy, Ukraine



Plyatsuk Leonid

Sumy State University, Sumy, Ukraine



Hurets Larysa

Sumy State University, Sumy, Ukraine



Trunova Inna

Sumy State University, Sumy, Ukraine



DOI:  10.52363/2522-1892.2021.1.1


Keywords: protection technologies, impact reduction, aerosol, physicochemical parameters, classification



The article discusses the issues of studying the parameters of various origins aerosol emissions in order to make a reasonable choice of appropriate technological solutions to reduce the impact on the environment. Based on the analysis of literary sources, a classical approach to the existing classification of aerosols considered: by the nature of the formation; by dispersion; by the state of aggregation of the dispersed phase; by morphological characteristics of particles; by particle concentration; by the nature of the impact on a person. Refinement of existing classifications was conducted based on the most important physical and chemical characteristics such as cohesiveness of particles, hygroscopicity, and ability to absorb additional substances from the environment which in turn is an important factor in the selection process of environmental solutions. Based on the analysis of aerosols classifications concluded possible solutions of the problem of selection of high-efficiency and reliable equipment capable for trapping fine dust with various physical and physicochemical parameters.



1.   Butler T. M., Lawrence M. G. (2009). The influence of megacities on global atmospheric chemistry: A modelling study. Environ. Chem., 6(3), 219–225.

2.   Twomey S. (1991). Aerosols, clouds and radiation. Atmos. Environ. Part A Gen. Top. 25, 2435–2442.

3.   Xu J., Szyszkowicz M., Jovic B., Cakmak S., Austin C. C., Zhu J. P. (2016). Aerosol types and radiative forcing estimates over East Asia. Atmos. Environ., 141, 532–541.

4.   Kaskaoutis D. G., Gautam R., Singh R. P., Houssos E. E., Goto D., Singh S., Bartzokas A., Kosmopoulos P. G., Sharma M., Hsu N. C., Holben B. N., Takemura T. (2012). Influence of anomalous dry conditions on aerosols over India: Transport, distribution and properties. Journal of Geophysical research, 117. D09106. DOI: 10.1029/2011JD017314.

5.   Hallquist M., Wenger J., Baltensperger U., Rudich Y., Simpson D., Claeys M., Dommen J., Donahue N., George C., Goldstein A. (2009). The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics, 9, 5155–5236. DOI: 10.5194/acp-9-5155-2009.

6.   Kahn R., Yu H., Schwartz S., Chin M., Feingold G., Remer L., Rind D., Halthore R., DeCola P. (2009). Atmospheric Aerosol Properties and Climate Impacts. National Aeronautics and Space Administration: Washington, DC, USA, 116 p.

7.   Berljand M. E. (1985). Prognoz i regulirovanie zagrjaznenij atmosfery [Prediction and regulation of atmospheric pollution]. Leningrad: Gidrometeoizdat, 272 p. [in Russian].

8.   Lee K., Park J., Kang M., Kim D., Batmunkh T., Bae M. S., Park K. (2017). Chemical characteristics of aerosols in coastal and urban ambient atmospheres. Aerosol and Air Quality Research, 17, 908–919.

9.   Alam K., Shaheen K., Blaschke T., Chishtie F., Khan H. U., Haq B. S. (2016). Classification of aerosols in an urban environment on the basis of optical measurements. Aerosol and Air Quality Research, 16, 2535–2549.

10. Choi Y., Ghim Y. S., Holben B. N. (2016). Identication of columnar aerosol types under high aerosol optical depth conditions for a single AERONET site in Korea. J. Geophys. Res. Atmos., 121, 1264–1277. DOI: 10.1002/2015JD024115.

11. Chin M., Diehl T., Dubovik O., Eck T. F., Holben B. N., Sinyuk A., Streets D. G. (2009). Light absorption by pollution, dust, and biomass burning aerosols: A global model study and evaluation with AERONET measurements. Ann. Geophys., 27, 3439–3464.

12. Dubovik O., Smirnov A., Holben B. N., King M. D., Kaufman Y. J., Eck T. F., Slutsker I. (2000). Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res., 105, 9791–9806. DOI: 10.1029/2000JD900040.

13. Kim J., Lee J., Lee H.C., Higurashi A., Takemura T., Song C. H. (2007). Consistency of the aerosol type classication from satellite remote sensing during the Atmospheric Brown Cloud–East Asia Regional Experiment campaign. J. Geophys. Res., 112, D22S33.

14. Pöschl U. (2005). Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem., Int. Ed., 44(46), 7520–7540.

15. Atwood S. A. (2019). Classication of aerosol using a cluster model. Classication of aerosol population type and cloud condensation nuclei properties in a coastal California littoral environment using an unsupervised cluster model. Atmos. Chem. Phys., 19, 6931–6947.

16. Qi-Xiang Chen, Chun-Lin Huang, Yuan Yuan, Qian-Jun Mao, He-Ping Tan. (2020). Spatiotemporal Distribution of Major Aerosol Types over China Based on MODIS Products between 2008 and 2017. Atmosphere, 11, 703 p.

17. Laptev A. G., Farahov M. I., Mindubaev R. F. (2003). Ochistka gazov ot ajerozol'nyh chastic separatorami s nasadkami [Cleaning gases from aerosol particles by separators with nozzles]. Kazan': izdatel'stvo «Pechatnyj dvor», 120 p. [in Russian].

18. Fuks N.A. (1968). Vysokodispersnye ajerozoli [Highly dispersed aerosols]. Uspehi himii [Advances in chemistry], 1965–1980. [in Russian].

19. Fuks N.A. (2009). Mehanika ajerozolej [Aerosol mechanics] / Moscow: Jeksmo, 351 p. [in Russian].

20. Chekman I.S., Syrovaja A.O., Andreeva S.V., Makarov V.A. (2013). Ajerozoli – dispersnye sistemy: Monografija. Kharkiv, «Cifrova drukarnja no. 1», 100 p. [in Russian].

21. Grin H., Lejn V. (1969). Ajerozoli – pyli, dymy i tumany [Aerosols – dust, fumes and mists]. Leningrad, Himija, 428 p. [in Russian].

22. Rajst P. (1997). Ajerozoli [Aerosols]. Moscow, Mir, 397 p. [in Russian].

23. Tsuji H., Makino H., Yoshida H. (2001). Classification and collection of fine particles by means of backward sampling. Powder Technology, 118, 45–52.

24. Hyvönen S. (2005). A look at aerosol formation using data mining techniques. Atmos. Chem. Phys., 5, 3345–3356.

25. Verma S., Prakash D., Ricaud P., Payra S., Attié J.L., Soni M. (2015). A new classification of aerosol sources and types as measured over Jaipur, India. Aerosol and Air Quality Research, 15, 985–993.

26. Meng-Dawn Cheng. (2013). Classification of Volatile Engine Particles. Aerosol and Air Quality Research, 13, 1411–1422.

27. Toledano C. (2009). Airmass Classification and Analysis of Aerosol Types at El Arenosillo (Spain). Journal of applied meteorology and climatology, 48, 962981.

28. So Hyeon Jeon, Hyung Bae Lim, Na Rae Choi, Ji Yi Lee, Yun Kyong Ahn, Yong Pyo Kim. (2019). Classification and Characterization of Organic Aerosols in the Atmosphere over Seoul Using Two Dimensional Gas Chromatography-time of Flight Mass Spectrometry (GC × GC/TOF-MS) Data. Asian Journal of Atmospheric Environment, 13(2), 88-98.

29. Dal Maso M., Kulmala M., Riipinen I., Wagner R., Hussein T., Aalto P. P., Lehtinen K. E. (2005). Formation and Growth of Fresh Atmospheric Aerosols: Eight Years of Aerosol Size Distribution Data from SMEAR II, Hyytiala, Finland. Boreal Env. Res., 10, 323–336.

30. Kunkel D., Lawrence M. G., Tost H., Kerkweg A., Jöckel P., Borrmann S. (2012). Urban emission hot spots as sources for remote aerosol deposition. Geophys. Res. Lett., 39, L01808. DOI: 10.1029/2011GL049634.

31. Rodr´ıguez S., Cuevas E., Gonz´alez Y., Ramos R., Romero P.M., P´erez N., Querol X., Alastuey A. (2008). Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5−10 concentrations in a coastal city. Atmos. Environ., 42, 6523–6534.

32. Remer L., Kaufman Y. J. (1998). Dynamic aerosol model - Urban/industrial aerosol. Journal of Geophysical research, 103(D12), 13859–13871.

33. Almeida S. M. (2020). Ambient particulate matter source apportionment using receptor modelling in European and Central Asia urban areas. Environmental Pollution, 266, 115199.

34. Calvo A. I., Alves C., Castro A., Pont V., Vicente A. M., Fraile R. (2013). Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos. Res., 120, 1-28. DOI: 10.1016/j.atmosres.2012.09.021.

35. Abdul-Razzak H., Ghan S., Rivera-Carpio C. (1998). A parameterisation of aerosol activation. Part I: Single aerosol type. Journal of Geophysical research, 103, 6123–6132.

36. Basart S. (2009). Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East. Atmos. Chem. Phys., 9, 8265–8282.

37. World Health Organization. URL: https://www.who.int/.

38. Belis C. A., Pisoni E., Degraeuwe B., Peduzzi E., Thunis P., Monforti-Ferrario F., Guizzardi D. (2019). Urban pollution in the Danube and Western Balkans regions: the impact of major PM2.5 sources. Environ. Int., 133, 105–158.

39. Diapouli E., Manousakas M., Vratolis S., Vasilatou V., Maggos Th., Saraga D., Grigoratos Th., Argyropoulos G., Voutsa D., Samara C., Eleftheriadis K. (2017). Evolution of air pollution source contributions over one decade, derived by PM10 and PM2.5 source apportionment in two metropolitan urban areas in Greece. Atmos. Environ., 164, 416–430.

40. Lang J. L., Zhou Y., Chen D. S., Xing X. F., Wei L., Wang X. T., Zhao N., Zhang Y. Y., Guo X. R., Han L. H. (2017). Investigating the contribution of shipping emissions to atmospheric PM2.5 using a combined source apportionment approach. Environ. Pollut., 229, 557-566.