Oleksandr Kovalov

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


Sobyna Vitaliy

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


Sokolov Dmitry

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


Harbuz Serhii

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


Vasyliev Serhii

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


Kokhanenko Volodymyr

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


DOI:  10.52363/2522-1892.2021.1.3


Keywords: atmospheric air, monitoring posts, concentrations, mathematical model, OND-86, Gaussian model, base station, 3G / 4G operator



The paper proposes the creation of a network of fully automatic monitoring stations for air pollution on the basis of networks of 3G / 4G base stations of mobile operators of Ukraine, which will provide data on concentrations of pollutants subject to mandatory real-time control at a specific point in space. with known coordinates. Substantiation of the choice and adaptation of the mathematical model for calculating the distribution of impurities of pollutants in the atmosphere (the necessary component of the proposed method) taking into account the engineering and technical means of automated measurements. A method for predicting the level of pollution and its distribution taking into account meteorological conditions based on the adaptation of the OND-86 model, as well as its supplementation by calculations based on the nonstationary Gaussian model, has been developed. The method differs from the existing ones by estimating the contribution of each source using the results of operational control, which allows to create automated air quality assurance systems. 


1.   Kovaljov A. A. (2020). Obosnovanie metoda operativnogo kontrolja sostojanija atmosfery v uslovijah chrezvychajnyh situacij [Justification of the method of operational monitoring of the state of the atmosphere in emergency situations] Problems of Emergency Situations, 31:48-67 [in Russian].

2.   Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. URL: [in Ukrainian].

3.   Beychok M.R. (2005). Fundamentals of Stack Gas Dispersion, 4th ed., 201 p.

4.   Atkins N. Air Pollution Dispersion: Ventilation Factor. URL:

5.   Byzova N.L., Garger E.K., Ivanov V.N. (1991). Jeksperimental'nye issledovanija atmosfernoj diffuzii i raschjoty rassejanija primesi [Experimental studies of atmospheric diffusion and calculations of impurity scattering], Leningrad, Gidrometeoizdat, 278 p. [in Russian].

6.   N'justad F.T. Van Don Ch. (1985). Atmosfernaja turbulentnost' i modelirovanie rasprostranenija primesej [Atmospheric turbulence and modeling of impurity propagation], Leningrad, Gidrometeoizdat, 351 p. [in Russian].

7.   Novikov A.E. (1963). Metod sluchajnyh sil v teorii turbulentnosti [The method of random forces in the theory of turbulence]. Experimental and Theoretical Physics, 44(6):2159-2168 [in Russian].

8.   Jaglom A.M. (1981). Modeli turbulentnoj diffuzii, opirajushhiesja na stohasticheskie differencial'nye uravnenija Lanzhevenovskogo tipa [Turbulent diffusion models based on Langevin-type stochastic differential equations]. Meteorologicheskie aspekty zagrjaznenija atmosfery [Meteorological aspects of air pollution], Moscow, 2:178-183 [in Russian].

9.   Pournazeri S., Tan S., Schulte N., Jing Q., Venkatram A. (2014). A computationally efficient model for estimating background concentrations of NOx, NO2, and O3. Environmental Modelling & Software, 52:19-37.

10. Alojan A.E. (2002). Dinamika i kinetika gazovyh primesej i ajerozolej v atmosfere: Kurs lekcij [Dynamics and kinetics of gas impurities and aerosols in the atmosphere: A course of lectures], Moscow, IVM RAN, 201 p. [in Russian].

11. Gisina F.A., Lajhtman D.L., Mel'nikova I.I. (1982). Dinamicheskaja meteorologija [Dynamic meteorology], Leningrad, Gidrometeoizdat, 607 p. [in Russian].

12. Bardina J, Ferziger J.H., Reynolds W.C. (1980). Improved subgrid-scale models for large-eddy simulation. AIAA 13th Fluid & Plasma Dynamics Conference. American Institute of Aeronautics and Astronautics, AAIA PAPER 80-1357, 10 p.

13. Deardorff J.W. (1972). Numerical investigation of neutral and unstable planetary boundary layers. Journal of the Atmospheric Sciences, 29:91-115.

14. Deardorff J.W. (1970). Preliminary results from numerical integration of the unstable boundary layer. Journal of the Atmospheric Sciences, 27:1209-1211.

15. Deardorff J.W. (1974). Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteorology, 7:81-106.

16. Deardorff J.W. (1974). Three-dimensional numerical study of turbulence in an entrain­ing mixed layer. Boundary-Layer Meteorology,
7: 199-226.

17. Moeng C.-H. (1984). A large-eddy simulation model for the study of planetary boundary layer turbulence. Journal of the Atmospheric Sciences, 41:2052-2062.

18. Deardorff J.W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(2):453-480.

19. Marchuk G.I., Alojan A.E. (2009). Dinamika i kinetika gazovyh primesej i ajerozolej v atmosfere i ih znachenija dlja biosfery [Dynamics and kinetics of gaseous impurities and aerosols in the atmosphere and their implications for the biosphere]. Biosfera [Biosphere], 1(1):48-57. [in Russian].

20. Guenther A., Lamb. B. (1990). Three-dimensional numerical simulation of plume downwash with a K-E turbulence model. Journal of Applied Meteorology and Climatology, 19:98-108.

21. Ermak D.L., Chan S.T., Morgan D.L., Morris L.K. (1982). A comparison of Dense Gas Dispersion Model Simulation with Burro Series LNG Spill Test Results. Journal of Hazardous Materials, 6:129-160.

22. Ooms G., Duijm N.J. (1984). Dispersion of a plume heavier than air. Proceedings of the Atmospheric Dispersion Heavy Gases and Small Particles Symposium Berlin e. a., 1-23.

23. Carnevale C., Finzi G., Guariso G., Pisoni E., Volta M. (2012). Surrogate models to compute optimal air quality planning policies at a regional scale. Environmental Modelling & Software, 34:44-50.

24. Metodika rascheta koncentracij v atmosfernom vozduhe vrednyh veshhestv, soderzhashhihsja v vybrosah predprijatij / Utverzhdena predsedatelem gosudarstvennogo komiteta SSSR po gidrometeorologii i kontrolju prirodnoj sredy No, 192 ot 04.08.1986 g. [Methodology for calculating the concentration of harmful substances in the atmospheric air contained in the emissions of enterprises / Approved by the Chairman of the USSR State Committee for Hydrometeorology and Environmental Control No. 192 of 04.08.1986] (1987), Leningrad: Gidrometeoizdat, 68 p.

25. Atmospheric Dispersion Modelling System. URL:

26. AERMOD: Description of Model Formulation. URL:

27. BUO-FMI (Dispersion from strongly buoyant sources – Finnish Meteorological Institute). URL:

28. Official CALPUFF Modeling System. URL:

29. Local Scale Atmospheric Dispersion Model. URL:

30. Lagrangian Eulerian Diffusion. URL: .

31. MERCURE. URL: http://pandora.meng.auth. gr/mds/showlong.php?id=61.

32. Riou Y. (1987). Comparison between MERCURE-GL code calculations, wind tunnel measurements and Thorney Island field Trials. Journal of Hazardous Materials, 16:247-265.

33. Beychok M.R. (2005). Fundamentals of Stack Gas Dispersion, 4th ed., 201 p.

34. Canepa E., Dallorto L., Ratto C. F. (2000). About the plume rise description in the dispersion code SAFE_AIR.  International Journal of Environment and Pollution, 14:235-245.