APPLICATION OF A MODEL INSTALLATION FOR EVALUATION OF EFFICIENCY OF PHYTOREMEDIATION METHODS OF SURFACE WASTEWATER TREATMENT

PDF(UKRAINIAN)

 

Ilinskyi Oleksii

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0002- 1737-9462

 

Rybalova Olha

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000–0002–8798–4780

 

Bryhada Olena

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0001-5777-8516

 

Bondarenko Alexander

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0002-7544-3442

 

Artemiev Sergey

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000–0002–9086–2856

 

DOI: 10.52363/2522-1892.2021.1.6

 

Keywords: environmental safety, phytoremediation, surface sewage, natural methods of treatment, plastic waste, forest fires, synthetic surfactants

 

Abstract

The article provides an assessment of the phytoremediation method as a promising direction of passive protection of soils and water bodies from pollution by surface waste waters, especially those contaminated as a result of fire extinguishing processes. Particular attention is paid to the danger of contamination with anionic surfactants. Natural methods of surface runoff purification have been analyzed, the efficiency of wastewater treatment in troughs with the use of industrial waste has been investigated. The prospects of using environmentally friendly plastic waste (PET, polypropylene, etc.) for the creation of artificial bioengineering structures are noted.

An experimental model installation was developed and installed for testing and evaluating the effectiveness of various methods and methods of phytoremediation. The main means of increasing its efficiency was a filter nozzle (layer) made of defibrated PET containers. A 6% solution of APAS (a foaming agent for fire extinguishing) was added to the experimental containers. The use of this environmentally friendly recycled material simultaneously solves the problem of its disposal. During the 48 days of the experiment, the filtrate samples were taken four times from containers that had different phytoremediation properties.

Based on the results of experimental studies, a method is proposed for assessing the effectiveness of using various types of filtering nozzles in troughs for purifying wastewater and various types of vegetation in a research model installation. The effectiveness of phytoremediation to reduce the harmful effect of anionic surfactants on the composition of wastewater after the use of foaming agents in extinguishing fires has been analyzed. An analysis of the use of a filter nozzle from defibrated PET containers showed an increase in the efficiency of phytoremediation processes.

 

References

1. Ribalova O.V., Brigada O.V., Korobkína K.M., Kraynyukov O.M., Míroshnichenko Í.M. (2019). Viznachennya nebezpeki vplivu lísovikh pozhezh na yakísniy stan runtív. Naukoviy vísnik budívnitstva, Kharkív: KHNUBA, 2(96):413-422.

2. Dadashov I., Loboichenko V., Kireev A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37(1):63-77.

3. Rybalova O., Bryhada O., Ilinskyi О., Bondarenko O., Zolotarova S. (2020). Phytoremediation methods for wastewater treatment. Danish Scientific Journal, 41:10-13.

4. Hu H., Li X., Wu S., Yang C. (2020). Sustainable livestock wastewater treatment via phytoremediation: Current status and future perspectives. Bioresource Technology, 315:123809. DOI: 10.1016/j.biortech.2020.123809.

5. Magmedov V.G., Zakharchenko M.A. (1993). Posíbnik do zastyvaniya vodookhooronnikh bíoinzhenernikh sporud (BÍS) dlya ochistki nemíneralízovanikh zabrudnenikh vod síl's'kogospodars'kogo virobnitstva Ukraina, Khar'kov, 16 p.

6. Magmedov B.G., Zakharchenko M.A., Yakovleva L.I., Ishhenko V.P., Vyshemirs'ka V.D. (1995). Patent 7705 Ukraine, C02F 3/00. Sporuda dlya biologicheskoy ochistki stichnikh vod.

7. McIntyre J.K., Davis J.W., Hinman C., Macneale K.H., Anulacion B.F., Scholz N.L., Stark J.D. (2015). Soil bioretention protects juvenile salmon and their prey from the toxic impacts of urban stormwater runoff. Chemosphere, 132:213-219. DOI: 10.1016/j.chemosphere.2014.12.052.

8. Tkachuk O.A., Yaruta YA.V. (2019). Ochishcheniye doshchovogo stoku pri yego regulyativnosti za dopomogoyu muzykal'nykh baseynív. Naukoviy vísnik budívnitstva, 95(1):204-211.

9. Prasetya A., Prihutami P., Warisaura A.D., Fahrurrozi M., Murti Petrus H.T.B. (2020). Characteristic of Hg removal using zeolite adsorption and Echinodorus palaefolius phytoremediation in subsurface flow constructed wetland (SSF-CW) model, Journal of Environmental Chemical Engineering, 8(3):103781.

10. Richter O., Nguyen H.A., Nguyen K.L., Nguyen V.P., Biester H., Schmidt P. (2016). Phytoremediation by mangrove trees: Experimental studies and model development, Chemical Engineering Journal, 294:389-399.

11. Jaskulak M., Grobelak A., Vandenbulcke F. (2020). Modeling assisted phytoremediation of soils contaminated with heavy metals – Main opportunities, limitations, decision making and future prospects, Chemosphere, 249:126196. DOI 10.1016/j.chemosphere.2020.126196.

12. Wei W., Tong J., Hu B.X. (2019). Study on ecological dynamic model for phytoremediation of farmland drainage water. Journal of Hydrology, 578:124026.

13. Shchukin I.S. (2018). Issledovaniye protsessov ochistki poverkhnostnykh stochnykh vod nefteproduktov i tyazhelykh metallov na fitofil'trakh. Vodosnabzheniye i sanitarnaya tekhnika, 2:32–42.

14. Loboichenko V., Strelets V., Leonova N., Malko A., Llyinskiy O. (2020) Comparative analysis of anthropogenic impact on surface waters in Kharkiv region. Indian Journal of Environmental Protection, 40(2):134–139.

15. Gurbanova M.A., Loboychenko V.M., Shevchenko R.I., Dadashov I.F. (2020). Analiz ekologicheskikh kharakteristik osnovnykh komponentov penoobrazovateley, ispol'zuyemykh v pozharotushenii. Tekhnogenno-ekologíchna bezpeka, 7(1/2020):27-37.

16. Grinchishin N.M., Poroshenko S.S. (2017). Fítotoksichníst' runtu, zabrudnenogo rozchinami pínoutvoryuvachív dlya gasínnya pozhezh. Naukoviy vísnik NLTU Ukraí̈ni, 27(6):77–80.

17. Turner B.D., Sloan S.W., Currell G.R. (2019). Novel remediation of per- and polyfluoroalkyl substances (PFASs) from contaminated groundwater using Cannabis Sativa L. (hemp) protein powder, Chemosphere, 229:22-31.

18. Cavaliere A., Pigliafreddo S., De Marchi E., Banterle A. (2020). Do Consumers Really Want to Reduce Plastic Usage? Exploring the Determinants of Plastic Avoidance in Food-Related Consumption Decisions. Sustainability, 12:9627. DOI: 10.3390/su12229627.

19. Villafañe I., Keogh C., Curran T.P., Reynaud E.G. (2018). Assessment of the Mechanical Properties of Pet Polymer Material from Recovered Plastic Bottles. Present Environment and Sustainable Development, 12(1): 203–214. DOI: 10.2478/pesd-2018-0016.

20. Nasrul A., Afrillia F., Sastika A., Rahmat S., Sri M. (2017). Effect of PVP on the characteristic of modified membranes made from waste PET bottles for humic acid removal. F1000RESEARCH, 6:668. DOI: 10.12688/f1000research.11501.2.