Matis Yevheniia

Kharkiv National University of Civil Engineering and Architecture, Kharkiv, Ukraine


Krot Olga

Kharkiv National University of Civil Engineering and Architecture, Kharkiv, Ukraine


DOI:  10.52363/2522-1892.2021.1.8


Keywords: product life cycle analysis, assessment of environmental consequences of production, methodology for assessing the environmental friendliness of enterprises



Based on the methods of product life cycle assessment, it is proposed to assess the environmental friendliness of the chemical plant. The LCA method represents the very systematic approach to assessing the environmental impact of production, carried out as a whole over its life cycle from the extraction and processing of raw materials to the use of individual components. It is used to systematically assess the impact of each stage of the production life cycle on the environment. Life cycle inventory analysis includes the collection of data required for the study, as well as the inventory of input (energy, water, raw materials and materials) and output (emissions into the environment, emissions, solid waste disposal, eastern water flows). a system that is a set of single processes interconnected by the flows of semi-finished products used in one or more given functions, with other productive systems and elementary flows with the environment (emissions into the atmosphere, discharges into water). Life cycle assessment (LCA) is a method that should be used to quantify the products and services of the environment carried out during its life cycle (ISO 14040 (2006)). There are several procedures approved by this methodology to support the calculation of the impact on emergencies. The methodology includes commercial software tools that are used directly or indirectly [1]. One of the goals of the LCA is to analyze the development of the production process at the station of emergency facilities. According to ISO 14040 (2006), the product life cycle assessment structure includes: 1) determining the level and scope to limit the study and select a functional unit; 2) analysis of input and output reserves of energy and materials that are important for the study of the research system; 3) life cycle impact assessment (LCIA) to classify environmental impacts; 4) phase interpretation, to test the overall popularity of the conclusion. The LCA can manage information to analyze and support the project and production decision-making process.



1.   Rahdari A.H., Anvary Rostamy A.A. (2015) Designing a general set of sustainability indicators at the corporate level. Journal of Cleaner Production, 108:757–771. DOI: 10.1016/j.jclepro.2015.05.108

2.   Artjuhov V.V., Zabelin S.I., Martynov A.S. (2012). Ob`ektivnaja ocenka jekologichnosti hozjajstvennoj dejatel'nosti: Metodologija i rezul'taty. Predprijatija, regiony Rossii, strany mira [Objective assessment of environmental friendliness of economic activities: Methodology and results. Enterprises, regions of Russia, countries of the world]. SPERO, 16 Autumn-Spring:113-142.

3.   Lysova E.P., L.A. Lisutina. (2013). Analiz metodov vyrabotki jelektricheskoj i teplovoj jenergii na predprijatijah toplivnojenergeticheskogo kompleksa s uchetom kriteriev jekologichnosti i jeffektivnosti ispol'zovanija toplivnojenergeticheskih resursov [Analysis of methods for generating electric and thermal energy at enterprises of the fuel and energy complex, taking into account the criteria of environmental friendliness and efficiency of using fuel and energy resources]. Internet-zhurnal “Naukovedenie” [Internet journal "Science "],5:6.

4.   Majorova L.P. Mishhenko O.A. (2009). Ocenka jekologichnosti tehnologicheskih processov.[ Evaluation of environmental friendliness of technological processes], Vestnik Tomskogo gos. universiteta [Bulletin of the Tomsk State University], 2(13):111-116. [in Russian].

5.   Lowell Center for Sustainable Production. (2015). What Is Sustainable Production? URL:

6.   Laptev N.I. Klochkov Ju.S., Moskvicheva E.L., Volgina A.D., Abdullin I.A., Bogateev G.G. (2014). Analiz samoorganizacii processov sistem menedzhmenta kachestva [Analysis of self-organization processes of quality management systems]. Vestnik Kazanskogo tehnologicheskogo universiteta [Bulletin of Kazan Technological University], 17(9):295-298. [in Russian].

7.   Calvo-Serrano R., González-Miquel M., Papadokonstantakis S., Guillén-Gosálbez G. (2017). Predicting the cradle-to-gate environmental impact of chemicals from molecular descriptors and thermodynamic properties via mixed-integer programming. Computers & Chemical Engineering, 108:179–193.

8.   Romanenko M.O., Yemec' M.A., Romanenko І.І., Lesnіkova І.Ju. (2017). Sposobi ocіnki ekologіchnostі sistem zhittiezabezpechennja objektіv zhitlovogo ta komunal'nogo gospodarstva [Methods for assessing the environmental friendliness of life support systems of housing and communal services]. Stroitel'stvo, materialovedenie, mashinostroenie [Construction, materials science, mechanical engineering], 98:137-143

9.   Reap J., Roman F., Duncan S., Bras B. (2008). A survey of unresolved problems in life cycle assessment – Part I: goal and scope and inventory analysis. The International Journal of Life Cycle Assessment, 13(4):290-300.

10. Blass V., Corbett C.J. (2017). Same supply chain, different models: Integrating perspectives from life cycle assessment and supply chain management. Journal of Industrial Ecology, 22(1):18-30. DOI: 10.1111/jiec.12550.

11. Meyer D.E., Upadhyayula V.K. (2014). The use of life cycle tools to support decision making for sustainable nanotechnologies. Clean Technologies and Environmental Policy, 16(4):757–772.

12. WCED (World Commission on Environment and Development). (1987). United Nations General Assembly document A/42/427». Our Common Future. Oxford University Press, Oxford, UK.

13. Mayorova L.P. (2010). Analiz metodicheskih podhodov k ocenke jekologichnosti tehnologicheskih processov [Analysis of methodological approaches to assessing the environmental friendliness of technological processes]. Gornyj informacionno-analiticheskij bjulleten' (nauchno-tehnicheskij zhurnal) [Mining information and analytical bulletin (scientific and technical journal)]. 2(12):385-401. [in Russian].

14. Guin’еe J.B., Heijungs R., Huppes G., Zamangni A., Masoni P., Buonamici R., Ekvall T., Rydberg T. (2011). Life cycle assessment: Past, present, and future. Environmental Science & Technology, 45:90–96.

15. Brom A.E., Eliseeva E.V. Metod ocenki zhiznennogo cikla produkcii [Method for assessing the life cycle of products]. Publishing house Education and Science s.r.o. URL:

16. Komarysta B.M., Bendjug V.I. (2017). Algorytm ocinky vplyvu zhyttjevogo cyklu produktu [Algorithm for assessing the impact of the product life cycle]. III Vseukr. nauk.-prakt. konf. “Aktual'ni problemy naukovo-promyslovogo kompleksu regioniv” [III All-Ukrainian scientific-practical conference "Actual problems of scientific and industrial complex of regions"], Rubizhne, 42-45. [in Ukrainian].

17. Das T.K. (2002). Evaluating the life cycle environmental performance of chlorine disinfection and ultraviolet technologies. Clean Technologies and Environmental Policy, 4(1):32–43.

18. Delgove M.A.F., Laurent A.-B., Woodley J.M., De Wildeman S.M.A., Bernaerts K.V., van der Meer Y. (2019). A prospective life cycle assessment (LCA) of monomer synthesis: comparison of biocatalytic and oxidative chemistry. ChemSusChem, 12(7):1349–1360.

19. Gear M., Sadhukhan J., Thorpe R., Clift R., Seville J., Keast M. (2018). A life cycle assessment data analysis toolkit for the design of novel processes—a case study for a thermal cracking process for mixed plastic waste. Journal of Cleaner Production, 180:735–747.

20. Moshev E. R., Meshalkin V. P. (2018). Koncepcija i prakticheskaja realizacija problemno-orientirovannoj sistemy dlja informacionnoj podderzhki zhiznennogo cikla himiko-tehnologicheskogo oborudovanija [Concept and practical implementation of a problem-oriented system for information support of the life cycle of chemical-technological equipment]. Matematicheskie metody v tehnike i tehnologijah – MMTT [Mathematical methods in engineering and technology – MMTT], 4:124-128. [in Russian].

21. Calvo-Serrano R., Guillén-Gosálbez G. (2018). Streamlined life cycle assessment under uncertainty integrating a network of the petrochemical industry and optimization techniques: Ecoinvent versus mathematical modeling. ACS Sustainable Chemistry & Engineering, 6(5):7109–7118.

22. Arcese, G., M. C. Lucchetti, I. Massa, and C. Valente. (2018). State of the art in S-LCA: Integrating literature review and automatic text analysis. The International Journal of Life Cycle Assessment, 23:394-405. DOI: 10.1007/s11367-016-1082-0

23. Yang Y., Heijungs R. (2018). On the use of different models for consequential life cycle assessment. The International Journal of Life Cycle Assessment, 23(4):751–758.

24. Brundage M.P., Bernstein W.Z., Hoffenson S., Chang, Q., Nishi H., Kliks T., Morris K.C. (2018). Analyzing environmental sustainability methods for use earlier in the product lifecycle. Journal of Cleaner Production, 187:877-892.

25. Palazzo J., Geyer R., Suh S. (2020). A review of methods for characterizing the environmental consequences of actions in life cycle assessment. Journal of Industrial Ecology, 24(4):815-829. DOI: 10.1111/jiec.12983.

26. Artz J., Müller T.E., Thenert K., Kleinekorte J., Meys R., Sternberg A., Bardow A., Leitner W. (2017). Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chemical Reviews, 118(2):434–504.

27. Karka P., Papadokonstantakis S., Kokossis A. (2019). Environmental impact assessment of biomass process chains at early design stages using decision trees. The International Journal of Life Cycle Assessment, 24(9):1675–1700.

28. Righi S., Baioli F., Dal Pozzo A., Tugnoli A. (2018). Integrating life cycle inventory and process design techniques for the early estimate of energy and material consumption data. Energies, 11(4):970.