Koval Iryna

Lviv Рolytechnic National University, Lviv, Ukraine


DOI: 10.52363/2522-1892.2022.2.2


Keywords: destruction of yeast cells, destruction degree, argon action, cavitation



The aim of the study was to investigate the cavitation effect and inert gas on the viability of yeast in the water and to determine the gas effectiveness during cavitation treatment of the water system. Experimental data on the simultaneous action of argon bubbled at a rate of 0.2 cm3/s through an aqueous medium (volume 75 cm3) and ultrasonic cavitation (frequency 22 kHz, power 35 W) on the yeast Saccharomyces cerevisiae during the two-hour process are presented. The number of microorganisms per unit volume of test water was determined by the total number of colonies on the nutrient medium on Petri dishes. An active decrease in the number of cells at the beginning of the process (61.84% after 30 min) with the initial microbiological contamination of water 2.07 × 104 CFU/cm3 with the achievement of the proportion of dead cells > 98% after water treatment for 1 hour. The obtained results indicate intensive cavitation purification of water from the investigated microorganisms during argon bubbling. 



1. Chaudhry, F. N., & Malik, M. F. (2017). Factors Affecting Water Pollution: A Review. Journal of Ecosystem and Ecography, 7(1), 225–231.

2. Haseena, M., Malik, M. F., & Javed, A. (2017). Water pollution and human health. Environmental Risk Assessment and Remediation, 1(3), 16–19.

3. Koinova, I. B., & Chorna, A. K. (2019). Vodojmy mista L'vova: suchasnyj geoekologichnyj stan ta mozhlyvosti jogo pokrashhennja. Man and Environment. Issues of Neoecology, 32, 6–15. [In Ukrainian]

4. Naddeo, V., Cesaro, A., & Mantzavinos, D. (2014). Water and wastewater disinfection by ultrasound irradiation – a critical review. Global NEST Journal, 6(3), 561–577.

5. Iorio, M. C., Bevilacqua, A., & Corbo, M. R. (2019). A case study on the use of ultrasound for the inhibition of Escherichia coli O157:H7 and Listeria monocytogenes in almond milk. Ultrasonics Sonochemistry, 52, 477483.  

6. Kong, Y., Peng, Y., & Zhang, Zh. (2019). Removal of Microcystis aeruginosa by ultrasound: Inactivation mechanism and release of algal organic matter. Ultrasonics Sonochemistry, 56, 447457.

7. Li, Y., Shi, X., & Zhang, Zh. (2019). Enhanced coagulation by high-frequency ultrasound in Microcystis aeruginosa – laden water: Strategies and mechanisms. Ultrasonics Sonochemistry, 55, 232–242.

8. Luhovskyi, O. F., Gryshko, I. A., & Bernyk, I. M. (2018). Enhancing the Efficiency of Ultrasonic Wastewater Disinfection Technology. Journal of Water Chemistry and Technology, 40, 95–101.

9. Dai, Ch., Xiong, F., He, R., Zhang, W., & Ma, Н. (2017). Effects of low-intensity ultrasound on the growth, cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae. Ultrasonics Sonochemistry, 36, 191–197.

10. Park, J., Son, Y., & Lee, W.H. (2019). Variation of efficiencies and limits of ultrasonication for practical algal bloom control in fields. Ultrasonics Sonochemistry, 55, 8–17.

11. Koval, І. Z. (2020). Vplyv kysnju ta vuglekyslogo gazu na ochyshhennja vody vid bakterij ta drizhdzhiv v kavitacijnyh umovah [Influence of oxygen and carbon dioxide on water purification from bacteria and yeast in cavitation conditions]. Visnyk of V. N. Karazin Kharkiv National University Series “Еcоlogy”, 22, 75–82. [In Ukrainian]

12. Koval, І.  (2020). Zhyttjezdatnist' sporogennyh bakterij v atmosferi inertnyh gaziv [Viability of sporogenic bacteria in an inert gas atmosphere]. Scientific Herald of Chernivtsy University. Biology (Biological Systems), 12(1), 8–13. [In Ukrainian]