STUDY OF URBAN WASTEWATER TREATMENT PROCESSES IN THE SYSTEM OF BIOLOGICAL TREATMENT FACILITIES “AERATION TANK-MIXER – SECONDARY SEDIMENTATION TANK”

PDF(UKRAINIAN)

 

Gornostal Stella

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

http://orcid.org/0000-0003-0789-7669

 

Artemiev Sergey

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0003-4535-1990

 

Bryhada Olena

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0001-5777-8516

 

Ilinskyi Oleksii

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0002-1737-9462

 

Rybalova Olga

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

http://orcid.org/0000-0002-8798-4780

 

Reinvald Bohdan

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

 

DOI: 10.52363/2522-1892.2023.2.3

 

Keywords: aeration tank-mixer, secondary settling tank, waste liquid, biological treatment, activated sludge, regenerator, environmental protection

 

Abstract

The paper examines the features of the biological purification process in the “aeration tank-mixer – secondary settling tank” system. Factors influencing the course of processes were determined, and an experimental study of this process was carried out. After processing the results, models are proposed that describe the course of the activated sludge regeneration process and directly the process of biological wastewater treatment.

The results of the calculation were analyzed, the mutual influence of individual factors on the course of the biological purification process was investigated and analyzed. The models obtained in the work allow, without conducting additional experiments, to study the process of regeneration of activated sludge depending on the concentration of sludge and its consumption, as well as to study the process of wastewater treatment taking into account its characteristics (costs, concentrations of pollutants), the dose of sludge coming from the regenerator, concentrations dissolved oxygen.

It is advisable to use the proposed models for the analysis of the process of biological wastewater treatment in the system “aeration tank-mixer – secondary settling tank” and for quick response to changes occurring in the treatment process. This will prevent insufficiently treated wastewater from entering the reservoir and reduce its negative impact on the environment.

 

References

1.    Semenova, O. I., Omelchenko, Ye. O., Tohachynska, O. V., & Kotynskyi, A. V. (2023). Ochyshchennia stichnykh vod kharchovykh pidpryiemstv. [Wastewater treatment of food enterprises]. Scientific Collection «InterConf», 164, 183-190. [in Ukrainian]

2.    Natsionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha v Ukraini u 2021 rotsi [National report on the state of the natural environment in Ukraine in 2021]. (2021). URL: https://mepr.gov.ua/wp-content/uploads/2023/01/Natsdopovid-2021-n.pdf. [in Ukrainian]

3.    Ponomarenko, R. V., Slepuzhnikov, Ye. D., Pliatsuk, L. D., Ablieieva, I. Iu., & Tretiakov, O. V. (2019). Vyznachennia yakisnoho stanu vodnoi ekosystemy richky Dnipro. [Determination of the qualitative state of the water ecosystem of the Dnipro River. Ecological safety]. Ekolohichna bezpeka, 2/2019 (28), 52-62. DOI: 10.30929/2073-5057.2019.2.52-62. [in Ukrainian]

4.    Pashniuk, V. M., Miakush, O. R., & Sysa, L. V. (2020). Otsinka efektyvnosti roboty ochysnykh sporud mista Ternopil za kompleksom hidrokhimichnykh parametriv richky Seret. [Evaluation of the efficiency of the treatment facilities of the city of Ternopil based on the complex of hydrochemical parameters of the Seret River]. Bulletin of Lviv State University of Life Safety, 21, 94-101. DOI: 10.32447/20784643.21.2020.11. [in Ukrainian]

5.    Pro skhvalennia Vodnoi stratehii Ukrainy na period do 2050 roku [On the approval of the Water Strategy of Ukraine for the period until 2050]. 1134-r Order of the Cabinet of Ministers of Ukraine. (2022). URL: https://zakon.rada.gov.ua/laws/show/1134-2022-%D1%80#Text. [in Ukrainian]

6.    Pro okhoronu navkolyshnoho pryrodnoho seredovyshcha [On environmental protection]. 1264-XII Law of Ukraine. (1995). URL: http://zakon.rada.gov.ua/laws/show/1264-12. [in Ukrainian]. http://zakon.rada.gov.ua/laws/show/1264-12 [in Ukrainian].

7.    Sviatenko, A. I., Diadenko, N. M., & Nechyporenko-Shabunina, T. H. (2021). Doslidzhennia zminy efektyvnosti ochyshchennia stichnykh vod v aerotenkakh pid vplyvom riznykh chynnykiv. [Study of changes in the efficiency of wastewater treatment in aeration tanks under the influence of various factors]. Ekolohichna bezpeka, 1/2021 (11), 64-66. [in Ukrainian]

8.    Shevchenko, O. O., Krupko, V. A., Klintsov, L. M., & Ivanova, I. M. (2014). Modeliuvannia efektyvnosti roboty stantsii biolohichnoho ochyshchennia stichnykh vod. [Modeling the efficiency of the biological wastewater treatment plant]. Eastern-European Journal of Enterprise Technologies, 5/10 (71), 16-20. DOI: 10.15587/1729-4061.2014.26307. [in Ukrainian]

9.    Konontcev, S., Sabliy, L., Kozar, M., & Korenchuk, N. (2017). Treatment of recirculating water of industrial fish farms in phytoreactor with Lemnoideae. Eastern-European Journal of Enterprise Technologies, 5/10 (89), 61-67.

10.   Ali A., Khalid Z., Ahmed A. A., Ajarem J. S. (2023). Wastewater treatment by using microalgae: Insights into fate, transport, and associated challenges. Chemosphere, 338, 139501. DOI: 10.1016/j.chemosphere.2023.139501.

11.   Yeasmin, F., Rasheduzzaman, M., Manik, M., & Hasan, M. M. (2023). Activated Sludge Process for Wastewater Treatment. In: Shah, M.P. (eds) Advanced and Innovative Approaches of Environmental Biotechnology in Industrial Wastewater Treatment, 23-50. DOI: 10.1007/978-981-99-2598-8_2.

12.   Drewnowski, J, Remiszewska-Skwarek, A, Duda, S, & Łagód G. (2019). Aeration Process in Bioreactors as the Main Energy Consumer in a Wastewater Treatment Plant. Review of Solutions and Methods of Process Optimization. Processes, 7(5), 311. DOI: 10.3390/pr7050311.

13.   Skouteris, G., Rodriguez-Garcia, G., Reinecke, S. F., & Hampel, U. (2020). The use of pure oxygen for aeration in aerobic wastewater treatment: A review of its potential and limitations. Bioresource Technology, 312, 123595. DOI: 10.1016/j.biortech.020.123595.

14.   Li, W., Liu, J., Zhen, Y., Lin, M., Sui, X., Zhao, W., Bing, X., Lin, J., & Zhai, L. (2021). Simultaneous removal of nitrite and organics in a biofilm-enhanced high-salt wastewater treatment system via mixotrophic denitrification coupled with sulfate reduction. Journal of Water Process Engineering, 40, 101976. DOI: 10.1016/j.jwpe.2021.101976

15.   El-Rawy M., Abd-Ellah M. K., Fathi H., & Ahmed A.K.A. (2021). Forecasting effluent and performance of wastewater treatment plant using different machine learning techniques. Journal of Water Process Engineering, 44, 102380. DOI: 10.1016/j.jwpe.2021.102380.

16.   Valentin, C., Chassin, N., Couenne, F., Choubert, J. M., & Jallut, C. (2022). 1-D Dynamic knowledge-based model of urban sludge continuous-flow settling process. Comparison with experimental results. hal-03678231.

17.   Reyhaneh, H., Javad, A., Behrooz, S., Omid, M., & Sohrab, Z. (2023). Reliable Tools to Forecast Sludge Settling Behavior: Empirical Modeling. Energies, 16(2), 963. DOI: 10.3390/en16020963

18.   Krainiukov, О. M. Timchenko, V. D. (2018). Economic consequences of anthropogenic water pollution (by using Pechenizky reservoir as an example). Visnyk of V. N. Karazin Kharkiv National University Series “Ecоlogy, 19, 66-74.

19.   Lemesh, M. V., Biliaiev, M. M., Tatarko, L. H., & Yakubovska, Z. M. (2020). Modeliuvannia protsesu biolohichnoho ochyshchennia stichnykh vod na bazi kamernykh modelei. [Modeling of the process of biological wastewater treatment based on chamber models]. Nauka ta prohres transport, 3 (87), 16–24. [in Ukrainian]

20.   Vazhynskyi, S. E., & Shcherbak, T. I. (2016). Metodyka ta orhanizatsiia naukovykh doslidzhen. [Methodology and organization of scientific research]. Sumy: SumDPU imeni A.S.Makarenka, 260. [in Ukrainian]

21.   DSTU ISO 5667-13:2005. (2005). Yakist vody. Vidbyrannia prob. Chastyna 13. Nastanovy shchodo vidbyrannia prob mulu na sporudakh dlia ochyshchennia stichnykh vod i dlia vodohotuvannia [Water quality. Sampling of samples. Part 13. Guidelines for sludge sampling at wastewater treatment and water treatment facilities]. URL: http://surl.li/llrla. [in Ukrainian]

22.   DSTU ISO 5667-10:2005. (2005). Yakist vody. Vidbyrannia prob. Chastyna 10. Nastanovy shchodo vidbyrannia prob stichnykh vod. [Water quality. Sampling of samples. Part 10. Guidelines for waste water sampling]. URL: https://dnaop.com/html/62776/doc-%D0%94%D0%A1%D0%A2%D0%A3_ISO_5667-10_2005. [in Ukrainian]

23.       KND 211.1.4.024-95. (1995). Metodyka vyznachennia biokhimichnoho spozhyvannia kysniu pislia n dniv (BSK) v pryrodnykh i stichnykh vodakh [Methodology for determining biochemical oxygen consumption after n days (BSK) in natural and wastewater]. [in Ukrainian]