THE PLACE OF DPF WITH A LIQUID WORKING BODY IN THE CLASSIFICATION OF ATMOSPHERIC AIR PROTECTION TECHNOLOGIES FROM THE COMPLEX NEGATIVE INFLUENCE OF POWER PLANTS WITH RECIPROCATION ICE

PDF(ENGLISH)

 

Kondratenko Olexandr

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0001-9687-0454

 

Krasnov Viacheslav

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0002-8445-6843

 

Semykin Vitalii

A.M. Pidgorny Institute for Mechanical Engineering Problems of NAS of Ukraine, Kharkiv, Ukraine

 

DOI: 10.52363/2522-1892.2023.2.8

 

Keywords: environmental protection technologies, ecological safety, power plants, reciprocating internal combustion engines, diesel particulate matter filter, classification, particulate matters, nitrogen oxides, unburned hydrocarbones, carbon monoxide, noise, heat pollution

 

Abstract

In the article, which reflects the results of the authors' own research, the purpose of which was to improve the classification of methods and means of cleaning the exhaust gases flow of a reciprocating ICE from pollutants as environmental protection technologies by including in it executive devices for a complex effect on pollutants and factors of energy pollution of atmospheric air as a component the environment, in particular the DPF with a liquid working body, the following tasks were consistently solved regarding the improvement of the previously developed, listed in the open press and tested at a number of scientific and technical conferences of the design level of the executive device of the integrated action DPF and the improvement of the scientific product of information arrangement – a number of interconnected multi-level classifications – by determining the place of the device in these classifications, namely: analysis of literature data on environmental hazard factors, the source of which is a a reciprocating ICE as part of an power plant; analysis of the classification of methods and means of reducing exhaust gases toxicity of diesel a reciprocating ICE; analysis of the classification of methods and means of cleaning exhaust gases of diesel a reciprocating ICE from PM; analysis of mechanical devices and systems for cleaning of exhaust gases of diesel a reciprocating ICE from PM; analysis of chemical devices and systems for cleaning of exhaust gases of diesel a reciprocating ICE from PM; analysis of hydrodynamic methods of cleaning of exhaust gases of diesel a reciprocating ICE from PM and other factors of environmental danger; analysis of methods of regeneration of DPF with a liquid working body; analysis of the experimental recognition of the effectiveness of the use of DPF with a liquid working body; analysis of the neutralization of nitrogen oxides in the DPF with a liquid working body; analysis of the ozone method of neutralization of nitrogen oxides in exhaust gases of diesel a reciprocating ICE; analysis of the field of application of liquid neutralization of pollutants in the exhaust gases diesel a reciprocating ICE and improvement of the design of the diesel liquid neutralizer of exhaust gases diesel a reciprocating ICE. The object of the study is the classification of methods and means of cleaning the flow of exhaust gases of a reciprocating ICE from pollutants as environmental protection technologies. The subject of the study is the place of executive devices for complex impact on pollutants and factors of energy pollution of atmospheric air as a component of the environment, in particular, the DPF with a liquid working body, in the object of the study. The scientific novelty of the study results lies in the fact that the classification of methods and means of cleaning the exhaust gases flow of a reciprocating ICE from pollutants as environmental protection technologies by including in it executive devices for a complex effect on pollutants and factors of energy pollution of atmospheric air as a component the environment, in particular, DPF with a liquid working body. The practical significance of the study results is that the classification improved and supplemented in the study is useful for more detailed ordering of information and substantiation of the relevance of the development of individual complex innovative technologies of environmental management and the establishment of vertical and horizontal structural and logical relationships between the classification objects.

 

References

1. Vambol, SO., Strokov, O. P., Vambol, V. V., & Kondratenko O. M. (2015). Suchasni sposoby pidvyshchennia ekolohichnoi bezpeky ekspluatatsii enerhetychnykh ustanovok : monografіya [Modern methods of increasing the ecological safety of exploitation of power plants: monograph]. Kharkiv, Publ. Style-Izdat (FOP Bro­vin O.V.), 212. [in Ukrainian]

2. Kondratenko, O. M. (2021). Naukovo-metodolohichni osnovy zakhystu atmosfernoho povitria vid tekhnohennoho vplyvu enerhoustanovok z porshnevymy dvyhunamy vnutrishnoho zghoriannia [Scientific and methodological bases of protection of atmospheric air from technogenic influence of power plants with reciprocating internal combustion engines] : thesis. DrSc(Engineering): speciality 21.06.01 – ecological safety. Kharkiv, NUCD of Ukraine, 465. [in Ukrainian]

3. KondratenkoO., Babakin V., Krasnov V., & Semykin V. (2022). The feasibility of research on the development of technology for protecting the environment from the complex physical and chemical effects of reciprocating internal combustion engines with varying degrees of wear. The 2nd International scientific and practical conference «Science and technology: problems, prospects and innovations» (November 17–19, 2022). CPN Publishing Group, Osaka, Japan, 176–178.

4. SemykinV. (2001). Dyzelnyi ridynnyi neitralizator vidpratsovanykh haziv [Diesel liquid neutralizer of exhaust gases]. Aviation and space engineering and technology: Collection of science works, 23, 83–86. [in Ukrainian]

5. Semykin, V. (2008). Analyz oblasty prymenenyia zhydkostnoi neitralyzatsyy otrabotavshykh hazov dyzelei [Analysis of the scope of application of liquid neutralization of spent diesel engines]. Road transport, 22, 128–130. [in Russian]

6. Kondratenko, O., Mishchenko, I., Chernobay, G., Derkach, Yu., & Suchikova, Ya. (2018). Criteria based assessment of the level of ecological safety of exploitation of electric generating power plant that consumes biofuels. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS–2018) (10–14 September 2018): Book of Papers. Kharkiv, Publ. NTU «KhPI», 185–189. DOI: 10.1109/IEPS.2018.8559570.

7. Kondratenko, O., Koloskov, V., Strokov, O., Kovalenko, S., & Derkach, Yu. (2020). Criteria based assessment of efficiency of conversion of reciprocating ICE of hybrid vehicle on consumption of biofuels. 2020 IEEE KhPI Week on Advanced Technology (05 – 10 October 2020): Conference Proceedings. Kharkiv, Publ. NTU «KhPI», 177–182. DOI: 10.1109/KhPI Week51551. 2020.9250118.

8. Kondratenko, O., Andronov, V., Koloskov, V., & Strokov, O. (2021). Development and Use of the Index of Particulate Matter Filter Efficiency in Environmental Protection Technology for Diesel-Generator with Consumption of Biofuels. 2021 IEEE KhPI Week on Advanced Technology (13–17 September 2021): Conference Proceedings. Kharkiv, Publ. NTU «KhPI», 239–244. DOI: 10.1109/KhPIWeek53812.2021. 9570034.

9. UmerenkovaK. R., BorysenkoV. G., KondratenkoO. M., & LievtierovA. M. (2023). Determination of Thermophysical Properties of Alternative Motor Fuels as an Environmental Aspect of Internal Combustion Engines. Engineering Innovations, 7, 1924. DOI: 10.4028/p-RwzP9p.

10. Kondratenko, O., Koloskov, V., Koloskova, H., & Babakin, V. (2023). Research of Properties and Rational Composition of Ecosafe Building Materials with Ash-and-Slag Waste from Masute Fuel And Coal Combustion. Key Engineering Materials, 935, 85–97. DOI: 10.4028/p-RwzP9p.

11. Kondratenko, O., Koloskov, V., Kovalenko, S., & Derkach, Y. (2021). Research of Technical and Economic Properties of Material of Porous Fuel Briquettes from the Solid Combustible Waste Impregnated with Liquid Combustible Waste. Materials Science Forum, 1038, 303–314. DOI: 10.4028/www.scientific.net/msf.1038.303.

12. Koloskov, V., Koloskova, H., Kondratenko, O., & Storozhenko, Ye (2022). Zolne hranuliuvannia nasinnia u pakuvanni nasinnia z vykorystanniam nebezpechnykh vidkhodiv tvarynnytstva [Ash granulation of seeds in seed packaging using hazardous livestock waste]. Technogenic and ecological safety, 12(2/2022), 65–71. DOI: 10.52363/2522-1892.2022.2.8. [in Ukrainian]

13. Kondratenko, O. M., Andronov, V. A., Strokov, O. P., Babakin, V. M., & Krasnov, V. A. (2022). Instrumentalna pokhybka vidomykh formul pererakhunku pokaznykiv dymnosti u pokaznyky toksychnosti vidpratsovanykh haziv porshnevykh DVZ [Instrumental error of known formulas for converting smoke values into toxicity values of exhaust gases of reciprocating internal combustion engines], Technogenic and ecological safety, Kharkiv, NUCD of Ukraine, № 12(2/2022), pp. 3–18. DOI: 10.52363/2522-1892.2022.2.1. [in Ukrainian]

14. KondratenkoO. M., KoloskovV. Yu., TkachenkoO. O., KapinosYe. V., & RepetenkoM. V. (2021). Development of the combined reservoir of mixture of technical combustible liquids as component of environment protection technology. Technogenic and Ecological Safety, 10(2/2021), 28–40. DOI: 10.52363/2522-1892.2021.2.5.

15. KondratenkoO. M., KoloskovV. Yu., Kovalenko, S. A., Derkach, Yu. F., Botsmanovska, O. S., Podolyako, N. M. (2020). Determination of emissions of vapor of technic flammable liquids from enterprise for their storing and distribution and rational adjustments of their breathing valves. Technogenic and Ecological Safety, 8(2/2020), 17–31. DOI: 10.5281/ zenodo.4300753.

16. Kondratenko, O. M. (2020). Assessment of ecological and chemical efficiency of exploitation process of reciprocating ICE of vehicle with concideration of emission of sulphur oxides, benzo(a)py­rene and polycyclic aromatic hydrocarbones. Technogenic and Ecological Safety, 7(1/2020), 38–50. DOI: 10.5281/zenodo.3780076.

17. Kondratenko, O. M. (2019). Taking into account the emissions of CO2 as a toxic pollutant and as a greenhouse gas in fuel and ecological complex criteria-based assessment of diesel-generator operation process. Technogenic and Ecological Safety, 6(2/2019), 12–23. DOI: 10.5281/zenodo.3558960.

18. Kondratenko, O. M., Umerenkova, K. R., Lievtierov, A. M., Strokov, O. P., & KoloskovV. Yu. (2023). Udoskonalennia matematychnoho opysannia teplofizychnykh vlastyvostei alternatyvnykh motornykh palyv na osnovi modyfikovanoi termodynamichnoi teorii zburen. Chastyna 1 [Improvement of the mathematical description of the thermophysical properties of alternative motor fuels based on the modified thermodynamic theory of disturbances. Part 1]. Internal combustion engines, 1, 25–32. DOI: 10.20998/0419-8719.2023.1.04. [in Ukrainian]

19. Kondratenko, O. M., Umerenkova, K. R., Lievtierov, A. M., Strokov, O. P., & KoloskovV. Yu. (2023). Udoskonalennia matematychnoho opysannia teplofizychnykh vlastyvostei alternatyvnykh motornykh palyv na osnovi modyfikovanoi termodynamichnoi teorii zburen. Chastyna 2 [Improvement of the mathematical description of the thermophysical properties of alternative motor fuels based on the modified thermodynamic theory of disturbances. Part 2]. Internal combustion engines, 2, 54–63. DOI: 10.20998/0419-8719.2022.2.07.

20. KondratenkoO. M., AndronovV. A., PolishchukT. R., KasionkinaN. D., & KrasnovV. A. (2022). Accounting the emissions of engine fuel vapors in the criteria-based assessment of the ecological safety level of power plants with reciprocating ICE exploitation process. Internal combustion engines, 1, 40–50. DOI: 10.20998/0419-8719.2022.1.06.

21. KondratenkoO. M., AndronovV. A., KoloskovV. Yu., TkachenkoO. O., & KapinosYe. V. (2021). Determination of reference values of complex fuel and ecological criterion as the separate independent factor of ecoloical safety. Internal combustion engines, 1, 75–85. DOI: 10.20998/0419-8719.2021.1.10.

22. KondratenkoO. M., KoloskovV. Yu., DerkachYu. F., & KovalenkoS. A. (2020). Criteria-based assessment of fuel and ecological efficiency of exploitation process of reciprocating ICE of power plants with consideration of emission of sulfur oxides. Internal combustion engines, 2, 46–57. DOI: 10.20998/0419-8719.2020.2.07.

23. KondratenkoO. M., ChernobayG. O., DerkachJu. F., & KovalenkoS. A. (2019). Features of determination of the efficiency of devices for improvement of ecological safety level of vehicles with reciprocating ICE exploitation. Internal combustion engines, 2, 36–44. DOI: 10.20998/0419-8719.2019.2.07.

24. Feng, R., Hu, X., Li, G., Sun, Z., & Deng, B. (2022). A comparative investigation between particle oxidation catalyst (POC) and diesel particulate filter (DPF) coupling aftertreatment system on emission reduction of a non-road diesel engine. Ecotoxicology and Environmental Safety, 238, 113576. DOI: 10.1016/j.ecoenv.2022.113576.

25. Wong, P. K., Ghadikolaei, M. A., Chen, S. H., Fadairo, A. A., Ng, K. W., Yuen Lee, S. M., Xu, J. C., Lian, Z. D., Li, L., Wong, H. C., Ning, Z., Gali, N. K., & Zhao, J. (2022). Physical, chemical, and cell toxicity properties of mature/aged particulate matter (PM) trapped in a diesel particulate filter (DPF) along with the results from freshly produced PM of a diesel engine. Journal of Hazardous Materials, 434, 128855. DOI: 10.1016/j.jhazmat.2022.128855.

26. Shi, Y., Lu, Y., Cai, Y., He, Y., Zhou, Y., & Fang, J. (2022). Evolution of particulate matter deposited in the DPF channel during low-temperature regeneration by non-thermal plasma. Fuel, 318, 123552. DOI: 10.1016/j.fuel.2022.123552.

27. Meng, Z., Zeng, B., Tan, J., Chen, Z., & Ou, J. (2022). Study of gas and particulate emission characteristics during the fast regeneration period of DPF. Fuel, 317, 123353. DOI: 10.1016/j.fuel.2022.123353.

28. ToumasatosZ., Raptopoulos-ChatzistefanouA., KolokotronisD., PistikopoulosP., SamarasZ., & NtziachristosL. (2022). The role of the driving dynamics beyond RDE limits and DPF regeneration events on pollutant emissions of a Euro 6d-temp passenger vehicle. Journal of Aerosol Science, 161, 105947. DOI: 10.1016/j.jaerosci.2021.105947.

29. Wang, D.-y., Cao, J.-h., Tan, P.-q., Wang, Z.-h., Li, W.-l., Liu, Z.-w., & Wang, J. (2022). Full course evolution characteristics of DPF active regeneration under different inlet HC concentrations. Fuel, 310(C), 122452. DOI: 10.1016/j.fuel.2021.122452.

30. Jo, S., Cha, J., & Park, S. (2022). Exhaust emission characteristics of stoichiometric combustion applying to diesel particulate filter(DPF) and three-way catalytic converter(TWC). Energy, 254(B), 124196. DOI: 10.1016/j.energy.2022.124196.

31. Chen, Y.-j., Tan, P.-q., Duan, L.-s., Liu, Y., Lou, D.-m., & Hu, Z.-y. (2023). Temperature, particulate emission characteristics, and emission reduction performance for SCR coated on DPF under drop to idle regeneration. Energy, 268, 126764. DOI: 10.1016/j.energy.2023.126764.

32. Ou, J., Meng, Z., Hu, Y., & Du, Y. (2021). Experimental investigation on the variation characteristics of soot layer thickness and pressure drop during DPF/CDPF active regeneration. Chemical Engineering Science, 241, 116682. DOI: 10.1016/j.ces.2021.116682.

33. Meng, Z., Chen, C., Li, J., Fang, J., Tan, J., Qin, Y., Jiang, Y., Qin, Z., Bai, W., & Liang, K. (2020). Particle emission characteristics of DPF regeneration from DPF regeneration bench and diesel engine bench measurements. Fuel, 262, 116589. DOI: 10.1016/j.fuel.2019.116589.

34. Hu, S., Deng, B., Wu, D., & Hou, K. (2021). Energy flow behavior and emission reduction of a turbo-charging and EGR non-road diesel engine equipped with DOC and DPF under NRTC (non-road transient cycle). Fuel, 305, 121571. DOI: 10.1016/j.fuel.2021.121571.

35. RossomandoB., MeloniE., De FalcoG., SirignanoM., ArsieI., & PalmaV. (2021). Experimental characterization of ultrafine particle emissions from a light-duty diesel engine equipped with a standard DPF. Proceedings of the Combustion Institute, 38(4), 5695-5702. DOI: 10.1016/j.proci.2020.09.011.

36. Tan, P.-q., Chen, Y.-j., Wang, Z.-t., Duan, L.-s., Liu, Y., Lou, D.-m., Hu, Z.-y., Zhang, Y.-h. (2023). Experimental study of emission characteristics and performance of SCR coated on DPF with different catalyst washcoat loadings. Fuel, 346, 128288. DOI: 10.1016/j.fuel.2023.128288.

37. Meng, Z., Li, J., Fang, J., Tan, J., Qin, Y., Jiang, Y., Qin, Z., Bai, W., & Liang, K. (2020). Experimental study on regeneration performance and particle emission characteristics of DPF with different inlet transition sections lengths. Fuel, 262, 116487. DOI: 10.1016/j.fuel.2019.116487.

38. Martyr, A. J., & Plint, M. A. (2012). Chapter 16 – Engine Exhaust Emissions: The Design, Building, Modification and Use of Powertrain Test Facilities. Book. Fourth Edition. Elsevier Ltd., Butterworth-Heinemann, 407-450. DOI: 10.1016/B978-0-08-096949-7.00016-9.

39. He, J., Chen, K., & Xu, J. (2017). Urban Air Pollution and Control. Encyclopedia of Sustainable Technologies. Elsevier, 243–257. DOI: 10.1016/B978-0-12-409548-9.10182-4.

40. Åberg, A., Hansen, T. K., Linde, K., Nielsen, A. K., Damborg, R., Widd, A., Abildskov, J., Jensen, A. D., & Huusom, J. K. (2015). A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System. Computer Aided Chemical Engineering, 37, 455-460. DOI: 10.1016/B978-0-444-63578-5.50071-2.

41. Andana, T., Piumetti, M., Bensaid, S., Russo, N., Fino, D., & Pirone, R. (2019). Chapter 16 – Advances in Cleaning Mobile Emissions: NOx-Assisted Soot Oxidation in Light-Duty Diesel Engine Vehicle Application. Studies in Surface Science and Catalysis, 178, 329–352. DOI: 10.1016/B978-0-444-64127-4.00016-1.

42. Xin, Q. (2013). Diesel aftertreatment integration and matching. Diesel Engine System Design, 503–525. DOI: 10.1533/9780857090836.2.503.

43. Leong, W. U. A., Savci, I. H., Hatton, A., & Scott, J. (2011). Using 3D CFD to model exhaust fuel dosing device (fuel vaporizer) and oxidation of hydrocarbon. Internal Combustion Engines: Improving Performance, Fuel Economy and Emission, 245–259. DOI: 10.1533/9780857095060.6.245.

44. Okubo, M., & Kuwahara, T. (2020). Chapter 4 – Operation examples of emission control systems. New Technologies for Emission Control in Marine Diesel Engines, 145–210. DOI: 10.1016/B978-0-12-812307-2.00004-3.

45. Matsumoto, S. (2007). Advances in Automobile Exhaust Catalyst. Studies in Surface Science and Catalysis, 172, 27–34. DOI: 10.1016/B978-0-444-53202-2.50004-X.

46. Okubo, M., & Kuwahara, T. (2020). Chapter 3 – Principle and design of emission control systems. New Technologies for Emission Control in Marine Diesel Engines, 53–143. DOI: 10.1016/B978-0-12-812307-2.00003-1.

47. Sachs, R., & Asal, W. (2013). Compressor for exhaust treatment of non-road vehicles. 8th International Conference on Compressors and their Systems, 103–112. DOI: 10.1533/9781782421702.2.103.

48. Yuan, X., Wu, X., Wu, Y., & van Ree, T. (2018). Metal oxides for emission control. Metal Oxides, Metal Oxides in Energy Technologies, 391–414. DOI: 10.1016/B978-0-12-811167-3.00015-8.

49. Huang, J., Gao, J., Wang, Y., Chen, H., Laurikko, J., Pellikka, A.-P., Yang, C., & Ma, C. (2022). Insight into the penalty of exhaust emissions and fuel consumption by DPF regeneration of a diesel passenger car. Chemosphere, 309(1), 136629. DOI: 10.1016/j.chemosphere.2022.136629.

50. Ai, C., Du, Y., Wen, B., Shu, R., Cao, L., & Wang, W. (2022). Preparation and characterization of diesel particle filter (DPF) with hierarchical microstructure for catalytic combustion of soot. Ceramics International, 48(7), 9304–9312. DOI: 10.1016/j.ceramint.2021.12.119.

51. Bagi, S., Kamp, C. J., Sharma, V., & Aswath, P. B. (2020). Multiscale characterization of exhaust and crankcase soot extracted from heavy-duty diesel engine and implications for DPF ash. Fuel, 282, 118878. DOI: 10.1016/j.fuel.2020.118878.

52. Yusuf, A. A., Inambao, F. L., & Ampah, J. D. (2022). Evaluation of biodiesel on speciated PM2.5, organic compound, ultrafine particle and gaseous emissions from a low-speed EPA Tier II marine diesel engine coupled with DPF, DEP and SCR filter at various loads. Energy, 239(A), 121837. DOI: 10.1016/j.energy.2021.121837.

53. Zhang, H., He, J., Li, S., Iojoiu, E. E., Galvez, M. E., Xiong, H., Da Costa, P., & Chen, Y. (2020). Effect of Biodiesel impurities (K, Na, P) on non-catalytic and catalytic activities of Diesel soot in model DPF regeneration conditions. Fuel Processing Technology, 199, 106293. DOI: 10.1016/j.fuproc.2019.106293.

54. Zhao, X., Jiang, J., Zuo, H., & Mao, Z. (2023). Performance analysis of diesel particulate filter thermoelectric conversion mobile energy storage system under engine conditions of low-speed and light-load. Energy, 282, 128411. DOI: 10.1016/j.energy.2023.128411.

55. Zhao, X., Jiang, J., & Mao, Z. (2023). Effect of filter material and porosity on the energy storage capacity characteristics of diesel particulate filter thermoelectric conversion mobile energy storage system. Energy, 283, 129068. DOI: 10.1016/j.energy.2023.129068.

56. Zhang, Z., Xin, Y., Qu, N., Han, D., Jia, J., Wang, J., & Zhang, Z. (2023). In situ growth of ZnO nanorods on monolithic diesel particulate filters and supporting potassium for catalytic soot combustion. Chemical Physics Impact, 6, 100174. DOI: 10.1016/j.chphi.2023.100174.

57. Thirumalini, S., & Malemutt, P. (2021). Investigations on anti-Tampering of diesel particulate filter. Materials Today: Proceedings, 46(10), 4988–4992. DOI: 10.1016/j.matpr.2020.10.390.

58. Zhu, X., Liu, S., Wang, Z., Li, R., & Zhao, Z. (2023). Study of the influence of methanol/F-T diesel combustion particle materiality parameters on the deposition process in diesel particulate filter trap units. Journal of the Energy Institute, 107, 101184. DOI: 10.1016/j.joei.2023.101184.

59. Cavallo, D. M., Chiavola, O., Palmieri, F., Mancaruso, E., & Vaglieco, B. M. (2023). Experimental study on the effect of loading and regeneration for an optimized management of the DPF. Results in Engineering, 18, 101048. DOI: 10.1016/j.rineng.2023.101048.

60. Deng, M., Meng, Z., Ou, J., Wu, D., & Bao, Z. (2023). Experimental study on the pressure drop and thickness variation of carbon black particle layer during oxidation on DPF channels. Fuel, 354, 129290. DOI: 10.1016/j.fuel.2023.129290.