INFLUENCE ON GROUNDWATER EXCHANGE BETWEEN CONFLUENTS ON THE ECOLOGICAL QUALITY OF SURFACEWATER BODIES

PDF(UKRAINIAN)

 

Kovalenko Svitlana

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0003-2323-0856

 

DOI: 10.52363/2522-1892.2023.2.10

 

Keywords: surface water body, ecological quality of water, basin management principle, groundwater, сhlorides, geologic influence

 

Abstract

The article raises the question of the influence on surface water bodies downstream of the Dnipro River, taking into account the geological influence on one river on another. Such studies are necessary to establish the factors influencing the composition of surface waters of rivers and to determine the stability of the ecological quality of surface water bodies such as the left tributaries of the Dnipro – Desna, Sula, Psel, Vorskla and Samara. Detection of the influence on upstream tributaries on downstream, taking into account the presence of groundwater, was carried out using the example of chloride dynamics. Correlational dependences were constructed between chloride concentrations in observation posts located the closest to Dnipro. The obtained results confirm the influence of tributaries on each other. In order to confirm the conclusions obtained regarding the influence on rivers due to groundwater, studies with other impurities present in tributaries are needed. The obtained results can be used for the development and implementation of a mathematical model for forecasting the ecological state of surface water bodies within the sub-basin.

 

References

1.      Vodnyi kodeks Ukrainy [Water Code of Ukraine]. 213/95-VR Law of Ukraine. (1995). URL: https://zakon.rada.gov.ua/laws/show/213/95-вр#Text.

2.      World Bank Group. (2023). Ukraina – Shvydka Otsinka Zavdanoi Shkody Ta Potreb Na Vidnovlennia : Liutyi 2022 – Liutyi 2023 (Ukrainian) [Ukraine - Rapid Assessment of Damage and Recovery Needs: February 2022 - February 2023 (Ukrainian)]. Washington, D.C., World Bank Group. URL: http://documents.worldbank.org/curated/en/099062823034041908/P18017401fe8430010af21016afb4ebc8c4. [in Ukrainian]

3.      Zhang, F., Wu, Z., Di, D., & Wang, H. (2023). Water resources allocation based on water resources supply-demand forecast and comprehensive values of water resources. Journal of Hydrology: Regional Studies, 47, 1–19. DOI: 10.1016/j.ejrh.2023.101421.

4.      Snizhko, S., Shevchenko, O., & Didovets, Yu. (2021). Analiz vplyvu klimatychnykh zmin na vodni resursy Ukrainy (povnyi zvit za rezultatamy proektu) [Analysis of the impact of climate change on water resources of Ukraine (full report based on project results)]. Kyiiv, Tsentr ekolohichnykh initsiatyv Ekodiia”. [in Ukrainian]

5.      Kovalenko, S., Ponomarenko, R., Tretyakov, O., Ivanov, Ye., & Tytarenko, A. (2022). Ecological assessment of the Dnipro river's largest tributary within Ukraine [Ecological assessment of the largest tributary of the Dnipro River within Ukraine]. Ukrainian Journal of Civil Engineering and Architecture, 4(010), 65–75. DOI: 10.30838/J.BPSACEA.2312.250822.65.879. [in Ukrainian]

6.      Kovalenko, S. A., Ponomarenko, R. V., Kraynyuk, O. V., & Severynov, О. V. (2021). Ekologichna ocinka jakisnogo skladu poverhnevogo vodnogo ob’jektu (na prykladi richky Psel) [Environmental assessment of surface water body quality (on the example of the Рsel river)]. Visnyk of V. N. Karazin Kharkiv National University series «Еcоlogy», 25, 31–41. DOI: 10.26565/1992-4259-2021-24-03. [in Ukrainian]

7.   Kovalenko, S., Ponomarenko, R., Tretyakov, O., & Ivanov, Y. (2022). Identification of new temporal-spatial and seasonal trends in the ecological status of surface water bodies. Modern Scientific Research: Achievements, Innovations and Development Prospects: The 12th International scientific and practical conference (Berlin, Germany, May 22-24, 2022), 177-183.

8.      Ponomarenko, R., Plyatsuk, L., Tretyakov, O., & Kovalev, P. (2019). Vyznachennja ekologichnogo stanu golovnogo dzherela vodopostachannja Ukrai'ny [Determination of the ecological state of the main source of water supply of Ukraine]. Technogenic and ecological safety, 6(2/2019), 69–77. DOI: 10.5281/zenodo.3559035. [in Ukrainian]

9.   Bezsonnyi, V. L., Nekos, A. N., & Sapun, A. V. (2022). Ekolohichna otsinka yakosti vody Kanivskoho vodoskhovyshcha [Environmental assessment of the water quality of the Kaniv reservoir]. Man and Environment. Issues of Neoecology, 38, 85-96. DOI: 10.26565/1992-4224-2022-38-08. [in Ukrainian]

10.Prokhorova, L., Nepsha, O., & Zavialova, T. (2018). The quality of surface and underground waters of the Zaporizhzhia region and its impact on the health of the population [Yakist poverkhnevykh ta pidzemnykh vod Zaporizkoi oblasti ta yii vplyv na zdorovia naselennia]. Filosofiia zdorovia – zdorovyi sposib zhyttia – zdorova natsiia, 202-209. URL: http://eprints.mdpu.org.ua/id/eprint/1764/. [in Ukrainian]

11.Prokhorova, L., Nepsha, O., & Zavialova, T. (2018). Heoekolohichni problemy vykorystannia pidzemnykh vod Zaporizkoi oblasti ta shliakhy yikh vyrishennia [Geoecological problems of groundwater use in the Zaporizhzhia region and ways to solve them]. Ekolohichni doslidzhennia u vyshchykh navchalnykh zakladakh: Zbirnyk naukovykh prats, 159–162. URL: http://eprints.mdpu.org.ua/id/eprint/2490. [in Ukrainian]

12.Shukanova, A, & Safronov, O. (2020). Vykorystannia pidzemnykh vod Poltavshchyny ta yikh kharakterystyka [The use of underground waters of the Poltava region and their characteristics]. Osvitni y naukovi vymiry heohrafii ta turyzmu, 43–42. URL: http://dspace.pnpu.edu.ua/handle/123456789/15654. [in Ukrainian]

13.Ferreira, C. S. S., Adama-Ajonye, O., Ikenna, A. E., & Kalantari, Z. (2023). Groundwater quality in the vicinity of a dumpsite in Lagos metropolis, Nigeria. Geography and sustainability, 4(4), 379-390. DOI: 10.1016/j.geosus.2023.09.005.

14.Alharbi, T. (2023). Assessment of the Biyadh groundwater quality and geochemical process in Saudi Arabia using statistical, modelling, and WQI methods. Journal of King Saud University - Science, 35(8), 1–10. DOI: 10.1016/j.jksus.2023.102847.

15.Ahn, S. H., Jeong, D. H., Kim, M., Lee, T. K., & Kim, H.-K. (2023). Prediction of groundwater quality index to assess suitability for drinking purpose using averaged neural network and geospatial analysis. Ecotoxicology and Environmental Safety, 265, 1–9. DOI: 10.1016/j.ecoenv.2023.115485.

16.Jiang, J., Tanga, S., Han, D., Fu, G., Solomatine, D., & Zheng, Y. (2020). A comprehensive review on the design and optimization of surface water quality monitoring networks. Environmental Modelling & Software, 132, 104792. DOI: 10.1016/ j.envsoft.2020.104792.

17.Feretti, D., Acito, M., Dettori, M., Ceretti, E., Fatigoni, C., Posadino, S., Zerbini, I., Villarini, M., Moretti, M., Castiglia, P., & Azara, A. (2020). Genotoxicity of source, treated and distributed water from four drinking water treatment plants supplied by surface water in Sardinia, Italy. Environmental Research, 183, 1–9. DOI: 10.1016/j.envres.2020.109385.

18.State Agency of Water Resources of Ukraine. Official website. URL: https://www.davr.gov.ua/.