STUDY OF THE ROLE OF ALTERNATIVE FUELS IN THE ENERGY BALANCE OF UKRAINE AND THE COUNTRIES OF THE EUROPEAN UNION DURING ARMED AGGRESSION AND IN THE POST-WAR RECONSTRUCTION OF THE COUNTRY'S ECONOMY AND INFRASTRUCTURE
PDF(ENGLISH)
Umerenkova Ksenia
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
https://orcid.org/0000-0002-3654-4814
Borysenko Vitalii
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
https://orcid.org/0000-0003-1115-8666
Kondratenko Olexandr
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
https://orcid.org/0000-0001-9687-0454
Koloskov Volodymyr
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
https://orcid.org/0000-0002-9844-1845
Strokov Olexandr
Kremenchuk Branch of Classic Private University, Kremenchuk, Ukraine
Lytvynenko Olha
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
https://orcid.org/0000-0003-3322-8805
DOI: 10.52363/2522-1892.2024.1.2
Keywords: traditional motor fuels, alternative motor fuels, biodiesel, benzoethanole, hydrogen, environmental protection technologies, ecological safety, power plants, reciprocating internal combustion engines, fire and rescue vehicles, armed aggression, post war reconstruction
Abstract
In the article, which shows the results of the authors' own research, the purpose of which was to identify the quantitative and qualitative aspects of the role of alternative fuels in the energy balance of Ukraine and the countries of the European Union during the times of armed aggression and in the post-war reconstruction of the country's economy and infrastructure, the following tasks were consistently solved: analysis of the consumption of energy resources in the world and in Ukraine and the use of alternative types of fuel in transport; analysis of the nomenclature and properties of fuels of non-petroleum origin. The object of the study is the role of alternative fuels in the energy balance of Ukraine and the countries of the European Union. The subject of the study is quantitative and qualitative aspects of the object of the study at the time of armed aggression and in the post-war reconstruction of the country's economy and infrastructure. The scientific novelty of the research results is that the notion of the applicability of various types of alternative motor fuels for powering the power plants with reciprocating internal combustion engines, in particular the FERV units of the units of the SES of Ukraine, has gained further development, in terms of their solving problems both during the times of armed aggression and during the period of post-war reconstruction of the country's economy and infrastructure. The practical significance of the research results is that the results of a comparative analysis of the nomenclature, properties and prospects for the use of various types of alternative motor fuels for powering power plants with reciprocating internal combustion engines are suitable for use in the developing of strategic foundations for the functioning of the fire and emergency-rescue vehicles units of departments of the State Emergency Service of Ukraine during armed aggression and during the period of post-war reconstruction of the country's economy and infrastructure.
References
1. Kondratenko, O. M., Umerenkova, K. R., Koloskov, V. Yu, Koloskova, H. M., Strokov, O. P., & Lytvynenko, O. O. (2023). Development and generalization of the method for calculating thermodynamic properties and phase equilibrium in hydrocarbon mixtures as fuels for reciprocating ICE with the purpose of their ecologization. Technogenic and ecological safety, 14(2/2023), 3-15. DOI: 10.52363/2522-1892.2023.2.1.
2. Umerenkova, K., Borysenko, V., Kondratenko, O., & Lievtierov, A. (2023). Determination of Thermophysical Properties of Alternative Motor Fuels as an Environmental Aspect of Internal Combustion Engines. Engineering Innovations, 7, 51-59. DOI: 10.4028/p-4VM7ff.
3. Kondratenko, O. M., Umerenkova, K. R., Lievtierov, A. M., Strokov, O. P., & Koloskov, V. Yu. (2023). Improvement of the mathematical description of the thermophysical properties of alternative motor fuels based on the modified thermodynamic theory of disturbances. Part 1 [Udoskonalennia matematychnoho opysannia teplofizychnykh vlastyvostei alternatyvnykh motornykh palyv na osnovi modyfikovanoi termodynamichnoi teorii zburen. Chastyna 1]. Internal Combustion Engines, 1, 25-32. DOI: 10.20998/0419-8719.2023.1.04. [in Ukrainian]
4. Kondratenko, O. M., Umerenkova, K. R., Lievtierov, A. M., Strokov, O. P., & Koloskov, V. Yu. (2023). Improvement of the mathematical description of the thermophysical properties of alternative motor fuels based on the modified thermodynamic theory of disturbances. Part 2 [Udoskonalennia matematychnoho opysannia teplofizychnykh vlastyvostei alternatyvnykh motornykh palyv na osnovi modyfikovanoi termodynamichnoi teorii zburen. Chastyna 2]. Internal Combustion Engines, 2, 54-63. DOI: 10.20998/0419-8719.2022.2.07. [in Ukrainian]
5. Umerenkova, K.R., Borysenko, V.G. (2022). Prospects for the use of alternative fuels and methods of determining their thermophysical characteristics: monograph [Perspektyvy vykorystannia alternatyvnykh palyv i metodyka vyznachennia yikh teplofizychnykh kharakterystyk: monohrafiia]. Kharkiv, NUCDU, 92. [in Ukrainian]
6. Kondratenko, O., Mishchenko, I., Chernobay, G., Derkach, Yu., & Suchikova, Ya. (2018). Criteria based assessment of the level of ecological safety of exploitation of electric generating power plant that consumes biofuels. 2018 IEEE 3rd International International Conference on Intelligent Energy and Power Systems (IEPS–2018): Book of Papers. 10–14 September, 2018, 57-1–57-6. DOI: 10.1109/IEPS.2018.8559570.
7. Kondratenko, O., Koloskov, V., Kovalenko, S., Derkach, Y., & Strokov, O. (2020). Criteria based assessment of efficiency of conversion of reciprocating ICE of hybrid vehicle on consumption of biofuels. 2020 IEEE KhPI Week on Advanced Technology, KhPI Week 2020. 05–10 October 2020. Conference Proceedings, 177-182. DOI: 10.1109/KhPIWeek 51551. 2020.9250118.
8. Kondratenko, O. M., Krasnov, V. A., & Semykin, V. M. (2023). The place of DPF with a liquid working body in the classification of atmospheric air protection technologies from the complex negative influence of power plants with reciprocation ICE. Technogenic and ecological safety, 14(2/2023), 67-91. DOI: 10.52363/2522-1892.2023.2.8.
9. Kondratenko, O., Andronov, V., Koloskov, V., & Strokov, O. (2021). Development and Use of the Index of Particulate Matter Filter Efficiency in Environmental Protection Technology for Diesel-Generator with Consumption of Biofuels. 2021 IEEE KhPI Week on Advanced Technology: Conference Proceedings (13–17 September 2021, NTU «KhPI», Kharkiv), 239-244. DOI: 10.1109/KhPIWeek53812.2021.9570034.
10. Kondratenko, O., Koloskov, V., Kovalenko, S., & Derkach, Y. (2021). Research of Technical and Economic Properties of Material of Porous Fuel Briquettes from the Solid Combustible Waste Impregnated with Liquid Combustible Waste. Materials Science Forum, 1038, 303-314. DOI: https://doi.org/10.4028/www.scientific.net/msf.1038.303.
11. Kondratenko, O., Koloskov, V., Koloskova, H., & Babakin, V. (2023). Research of Properties and Rational Composition of Ecosafe Building Materials with Ash-and-Slag Waste from Masute Fuel And Coal Combustion. Key Engineering Materials, 935, 85-97. DOI: 10.4028/p-RwzP9p.
12. Muthukumar, K., & Kasiraman, G. (2024). Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study. Energy, 289, 129926. DOI: 10.1016/j.energy.2023.129926.
13. Gültekin, N., Gülcan, H. E., & Ciniviz, M. (2024). Investigation of the effects of hydrogen energy ratio and valve lift amount on performance and emissions in a hydrogen-diesel dual-fuel compression ignition engine. International Journal of Hydrogen Energy, 49(B), 352-366. DOI: 10.1016/j.ijhydene.2023.07.294.
14. Selvanathan, A., & Vijayaragavan, M. (2023). Effect on minor addition of aromatic (benzyl alcohol) and diethyl ether in Calophyllum inophyllum blended diesel fuel in a CI engine operates by hydrogen energy as a secondary fuel. Energy, 285, 129529. DOI: 10.1016/j.energy.2023.129529.
15. Indira, K., Wu, Y., Aloufi, A. S., Ng, T. T., & Pugazhendhi, A. (2024). Slaughterhouse wastes as potential energy for the replacement for fossil fuel in diesel engine with the influence of hydrogen and nanoparticles ZrO2 and MWCNT. Fuel, 361, 130614. DOI: 10.1016/j.fuel.2023.130614.
16. Ramalingam, S., Babu, M. N., Devarajan, Y., Babu, M. D., & Varuvel, E. G. (2023). Environmental and energy valuation of waste-derived Cymbopogon Martinii Methyl Ester combined with multi-walled carbon (MWCNTs) additives in hydrogen-enriched dual fuel engine. International Journal of Hydrogen Energy, 48(99), 39641-39657. DOI: 10.1016/j.ijhydene.2023.08.006.
17. Shere, A., & Subramanian, K. A. (2024). Effects of hydrogen and EGR on energy efficiency improvement with ultra low emissions in a common rail direct injection compression ignition engine fueled with dimethyl ether (DME) under HCCI mode. International Journal of Hydrogen Energy, 52(B), 1447-1474. DOI: 10.1016/j.ijhydene.2023.08.009.
18. Lee, S., Kim, Y., Lee, J., Kim, K., Lee, S., Min, K., & Oh, S. (2023). Energy and exergy analyses of hydrogen-fueled spark ignition engine with various air excess ratios and ignition timings. Fuel, 349, 128588. DOI: 10.1016/j.fuel.2023.128588.
19. Bui, V. G., Bui, T. M. T., Nguyen, V. G., Tran, V. N., Truong, L. B. T., & Pham, L. H. P. (2023). Concept of twining injector system for spark-ignition engine fueled with syngas-biogas-hydrogen operating in solar-biomass hybrid energy system. International Journal of Hydrogen Energy, 48(18), 6871-6890. DOI: 10.1016/j.ijhydene.2022.11.076.
20. Wylie, E., Panesar, A., & Morgan, R. (2024). Feasibility of hydrogen fuelled split cycle engine using multizone modelling. International Journal of Hydrogen Energy, 60, 917-926. DOI: 10.1016/j.ijhydene.2024.02.112.
21. Ameresh, H., Sastry, G. R. K., & Panda, J. K. (2024). A novel experimental performance and emission study on CRDI engine using hydrogenated and green biodiesels: A turbo powered engine with hydrogen dual fuel and ANN prediction approach. Fuel, 363, 130963. DOI: 10.1016/j.fuel.2024.130963.
22. Şanlı, B., & Uludamar, E. (2024). Effect of hydrogen addition in a diesel engine fuelled with diesel and canola biodiesel fuel: Energetic-exergetic, sustainability analyses. International Journal of Hydrogen Energy, 49(B), 1148-1159. DOI: 10.1016/j.ijhydene.2023.10.128.
23. Jayabal, R. (2024). Effect of hydrogen/sapota seed biodiesel as an alternative fuel in a diesel engine using dual-fuel mode. Process Safety and Environmental Protection, 183, 890–900. DOI: 10.1016/j.psep.2024.01.046.
24. Sarıdemir, S., Polat, F., & Ağbulut, U. (2024). Improvement of worsened diesel and waste biodiesel fuelled-engine characteristics with hydrogen enrichment: A deep discussion on combustion, performance, and emission analyses. Process Safety and Environmental Protection, 184, 637-649. DOI: 10.1016/j.psep.2024.02.018.
25. Zhu, T., Yan, X., Gao, Z., Qiu, Y., Zhu, L., & Huang, Z. (2024). Combustion and emission characteristics of ammonia-hydrogen fueled SI engine with high compression ratio. International Journal of Hydrogen Energy, 62, 579-590. DOI: 10.1016/j.ijhydene.2024.03.035.
26. Nibin, M., Varuvel, E. G., & Vikneswaran, F. J. M. (2024). Evaluation of wheat germ oil biofuel in diesel engine with hydrogen, bioethanol dual fuel and fuel ionization strategies. International Journal of Hydrogen Energy, 59, 889-902. DOI: 10.1016/j.ijhydene.2024.02.067.
27. Khaliq, A., Refaey, H. A., Alharthi, M. A., & Almohammadi, B. A. (2024). System development for production and onsite use of hydrogen in wet-ethanol fueled HCCI engine for cogeneration of power and cooling. Case Studies in Thermal Engineering, 55, 104153. DOI: 10.1016/j.csite.2024.104153.
28. Karbasi, J., Jazayeri, S. A., & Ebrahimi, M. (2024). Evaluation of significant greenhouse gas emissions reduction using hydrogen fuel in a LFG/Diesel RCCI engine. Journal of Engineering Research, 01012. DOI: 10.1016/j.jer.2024.01.012.
29. Stanley, J. M., Varuvel, E. G., & Martin, L. J. M. (2024). Quantitative assessment of small-bore gasoline direct injection engine for homogenous stoichiometric lean condition with hydrogen addition in dual fuel mode. International Journal of Hydrogen Energy, 57, 1446-1456. DOI: 10.1016/j.ijhydene.2023.12.033.
30. Manigandan, S., Praveenkumar, T. R., Ryu, J. I., Verma, T. N., & Pugazhendhi, A. (2023). Role of hydrogen on aviation sector: A review on hydrogen storage, fuel flexibility, flame stability, and emissions reduction on gas turbines engines. Fuel, 352, 129064. DOI: 10.1016/j.fuel.2023.129064.
31. Abubakar, Sh., Said, M. F. M., Abas, M. A., Ismail, N. A., Khalid, A. H., Roslan, M. F., & Kaisan, M. U. (2024). Hydrogen-fuelled internal combustion engines - Bibliometric analysis on research trends, hotspots, and challenges. International Journal of Hydrogen Energy, 61, 623-638. DOI: 10.1016/j.ijhydene.2024.02.280.
32. Oral, F. (2024). Effect of using gasoline and gasoline-ethanol fuel mixture on performance and emissions in a hydrogen generator supported SI engine. Case Studies in Thermal Engineering, 55, 104192. DOI: 10.1016/j.csite.2024.104192.
33. Qadiri, U. (2024). Numerical one-dimensional investigations on a multi-cylinder spark ignition engine using hydrogen/ethanol, hydrogen/methanol and gasoline in dual fuel mode. Environmental Science: Atmospheres, 4(2), 233-242. DOI: 10.1039/d3ea00139c.
34. Anand, T., & Debbarma, S. (2024). Experimental investigation of fuel injection timing effects on a CRDI diesel engine running on hydrogen-enriched waste plastic oil. International Journal of Hydrogen Energy, 57, 1051-1069. DOI: 10.1016/j.ijhydene.2024.01.052.
35. Qiang, Y., Ji, Ch., Wang, Sh., Xin, G., Hong, Ch., Wang, Z., & Shen, J. (2024). Study on the effect of variable valve timing and spark timing on the performance of the hydrogen-fueled engine with passive pre-chamber ignition under partial load conditions. Energy Conversion and Management, 302, 118104. DOI: 10.1016/j.enconman.2024.118104.
36. Teoh, Y. H., How, H. G., Le, T. D., Nguyen, H. T., Loo, D. L., Rashid, T., & Sher, F. (2023). A review on production and implementation of hydrogen as a green fuel in internal combustion engines. Fuel, 333(2), 126525. DOI: 10.1016/j.fuel.2022.126525.
37. Pro vnesennja zmin do dejakyh zakoniv Ukrai'ny shhodo spryjannja vyrobnyctvu ta vykorystannju biologichnyh vydiv palyva [On Amendments to Some Laws of Ukraine Regarding Promotion of the Production and Use of Biological Fuels]. 1391-VI Law of Ukraine. (2009). URL: https://zakon.rada.gov.ua/laws/show/1391-17#Text. [in Ukrainian]
38. Avramenko, A. N., Levterov, A. M., Marakhovsky, V. P., & Bgantsev, V. N. (2016). Chislennoe modelirovanie processov teplo- i massoobmena v bortovom kavitatore sistemy podderzhanija stabil'nosti avtomobil'nyh topliv [Numerical modeling of heat and mass transfer processes in the on-board cavitator of a system for maintaining the stability of automobile fuels]. Industrial heating engineering, 38(3), 42-48. [in Russian]
39. Levterov, A. M., Bgantsev, V. N., & Gladkova, N. Yu. (2019). Rozrahunkove vyznachennja vplyvu skladu biogazu na harakterystyky transportnogo dvyguna [Estimated Determination of the Effect of Biogas Composition on the Characteristics of a Transport Engine]. Internal combustion engines, 2, 70-75. [in Ukrainian]
40. Wood, J., & Long, G. (2000). Term World Oil Supply. U.S Energy Information Administration (EIA), 1-20.
41. British Petroleum (2009). Statistical review of world energy. London.
42. Pro shvalennja Energetychnoi' strategii' Ukrai'ny na period do 2030 roku [On approval of Energy Strategy of Ukraine for the period until 2030]. 145-r Decree of Cabinet of Ministers of Ukraine. (2006). URL: https://zakon.rada.gov.ua/laws/show/145-2006-%D1%80#Text. [in Ukrainian]
43. Pro shvalennja Koncepcii' Derzhavnoi' cil'ovoi' naukovo-tehnichnoi' programy rozvytku vyrobnyctva ta vykorystannja biologichnyh vydiv palyva [On approval of the Concept of the State targeted scientific and technical program for the development of the production and use of biological fuels]. 276-r Decree of Cabinet of Ministers of Ukraine. (2009). URL: https://zakon.rada.gov.ua/laws/show/276-2009-%D1%80#Text. [in Ukrainian]
44. Stacy C., Diegel W.S. (2006). Davis Transportation Energy Data Book: Edition 25, Sprigfield, Nation. Techn. Inform. Serv., 332 p.
45. Kanilo, P. M., & Sarapina, M. V. (2013). Budushhee avtotransporta – al'ternativnye topliva i kancerogennaja bezopasnost' [The future of motor transport – alternative fuels and carcinogenic safety]. Automobile transport, 31, 40-49. [in Russian]
46. Armstrong, P. (2003). ITM Oxygen. Progress report. Gasification Technologies, October, 12-15.
47. Bgantsev, V. N., Marakhovsky, V. P., & Khozhainov, S. P. (2009). Rezul'taty ispytanij dizelja na smesjah dizel'nogo topliva i biodobavki iz pobochnyh produktov maslozhirovogo i spirtovogo proizvodstv [Results of diesel tests on mixtures of diesel fuel and bioadditives from by-products of oil and fat and alcohol production]. Internal combustion engines, 1, 119-123. [in Russian]
48. Klyvenko, V. N., Mazur, A. I., & Sabashchuk, P. P. (2008). Kogeneracionnye sistemy s teplovymi dvigateljami: spravochnoe posobie [Cogeneration systems with heat engines: reference guide]: in 3 parts. Kyiv, Publ. IPC ALKON of NAS of Ukraine. [in Russian]
49. Yantovski, E. (2008). ZEMPES (Zero Emission Membrane Piston Engin System). 2nd Annual Conf. On Carbon dioxide Sequestration. Alexandria, VA. USA, May 5–8, 92-98.
50. Gilbert, S. (1974). The Use of Diesel Engine Underground in British Coal Mines. The Mining Engineer (GB), June, 403.
51. Avramenko, A. N., Lievtierov, A. M., & Bgantsev, V. N. (2019). Prospects of using hydrogen microaddition to improve diesel engine ecological indicators. Journal of Mechanical Engineering, 22(2), 70-75.
52. Bgantsev, V. M. (2016). Osoblyvosti funkcionuvannja elementiv palyvnoi' systemy dyzelja pry vykorystanni sumishevogo biodyzel'nogo palyva [Features of the functioning of diesel fuel system elements when using mixed biodiesel fuel]. Automobile transport, 39, 149-155. [in Ukrainian]
53. Solovei, V. V., Avramenko, A. N., & Umerenkova, K. R. (2019). An Analysis of Thermodynamic Characteristics of Metal-Hydride Systems for Hydrogen Storage, Using a Modified Scheme of Perturbation Theory. Journal of Mechanical Engineering, 22(3), 44-49.
54. Solovei, V. V., Avramenko, A. N., Lievtierov, A. M., & Umerenkova, K. R. (2018). Metal hydride technology of hydrogen activation. Journal of Mechanical Engineering, 21(1), 48-53.
55. Lievtierov, A. M., & Bgantsev, V. M. (2019). Motorne doslidzhennja vplyvu mikrodomishok vodnju na pokaznyky toksychnosti malolitrazhnogo dyzelja [Motor study of the effect of micro impurities of hydrogen on the toxicity indicators of a small diesel engine]. Internal combustion engines, 1, 46-49. [in Ukrainian]
56. Hinds, H. R. (1982). Hydrogen energy news and views. International Journal of Hydrogen Energy, 7, 205-209.
57. Taube, M., & Taube, P. (1980). Liquid organic carrier of hydrogen as a fuel for automobiles. Proc. 3rd World Hydrogen Energy Conf. Tokyo, Japan, June, 2, 23-26.
Kanilo, P. M., & Kostenko, K. V. (2008). Perspektivy stanovlenija vodorodnoj jenergetiki i transporta [Prospects for the development of hydrogen energy and transport]. Automobile transport, 23, 107-113. [in Russian]