APPLICATION OF THE PRINCIPLE OF MAXIMUM INFORMATIVENESS WITH MINIMAL EXCESS OF INFORMATION FOR SELECTING THE OPTIMAL NUMBER OF WATER QUALITY PARAMETERS
Bezsonnyi Vitalii
Simon Kuznets Kharkiv National University of Economics, Kharkiv, Ukraine
https://orcid.org/0000-0001-8089-7724
Tretyakov Oleg
National Aviation University, Kyiv, Ukraine
https://orcid.org/0000-0001-9868-0486
Plyatsuk Leonid
Sumy State University, Sumy, Ukraine
https://orcid.org/0000-0003-0095-5846
Ponomarenko Roman
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
https://orcid.org/0000-0002-6300-3108
DOI: 10.52363/2522-1892.2024.1.4
Keywords: information entropy, ecological state of surface waters, the principle of maximum informativeness with minimal information redundancy
Abstract
The quality of surface water plays a vital role in determining the sustainability of the ecological environment, the health of the population, and the socio-economic development of entire countries. Unfortunately, the rapid growth of the world's population together with the current climate change mainly deteriorates the state of surface water bodies. Thus, the use of effective methodologies capable of quickly and easily obtaining reliable information about the quality of surface water becomes fundamental for the effective use of water resources and implementation of mitigation measures and actions. Water pollution indices are one of the most widely used methods for providing a clear and complete picture of the state of river pollution, for the needs of rational water use and sustainable management of water resources. The selection of parameters is one of the most important and difficult stages, and the available statistical methods do not demonstrate great objectivity and accuracy in determining the real state of water quality. a new approach, based on the theory of entropy and known as the principle of maximum informativeness with minimum redundancy of information (MIMH), is proposed for determining the optimal subset of parameters describing the change in the quality level of a water body in space and time and, thus, determining the sources of pollution. The algorithm for the MIMN principle was implemented and applied to three rivers: the Southern Bug, the Dniester, and the Siverskyi Donets.
References
1. Abbasi, T., & Abbasi, S. A. (2012). Water Quality Indices, 1st ed. Elsevier Science: Burlington, MA, USA.
2. Dojlido, J., Raniszewski, J., & Woyciechowska, J. (1994). Water quality index applied to rivers in the Vistula river basin in Poland. Environmental Monitoring and Assessment, 33, 33-42.
3. Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2016). Development of river water quality indices-a review. Environmental Monitoring and Assessment, 188, 58.
4. Chowdury, M. S. U., Emran, T. B., Ghosh, S., Pathak, A., Alam, M. M., Absar, N., Andersson, K., & Hossain, M. S. (2019). IoT Based Real-time River Water Quality Monitoring System. Procedia Computer Science, 155, 161-168.
5. Mamun, K. A., Islam, F. R., Haque, R., Khan, M. G. M., Prasad, A. N., Haqva, H., Mudliar, R. R., & Mani, F. S. (2019). Smart Water Quality Monitoring System Design and KPIs Analysis: Case Sites of Fiji Surface Water. Sustainability, 11, 7110.
6. Sun, W., Xia, C. Y., Xu, M. Y., Guo, J., & Sun, G. P. (2016). Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang River. Ecological Indicators, 66, 306-312.
7. Paun, I., Cruceru, L., Chiriac, F. L., Niculescu, M., Vasile, G., & Marin, N. (2016). Water quality indices – methods for evaluating the quality of drinking water. Incd ecoind – international symposium – simi 2016 “The environment and the industry”, proceedings book, 395-402. DOI: 10.21698/simi.2016.0055.
8. Shwetank, Suhas, & Chaudhary, J. K. (2020). A Comparative Study of Fuzzy Logic and WQI for Groundwater Quality Assessment. Procedia Computer Science, 171, 1194-1203. DOI: 10.1016/j.procs.2020.04.128.
9. Pandey, R., & Pattanaik, L. A. (2014). Fuzzy QFD Approach to Implement Reverse Engineering in Prosthetic Socket Development. International Journal of Industrial and Systems Engineering, 17, 1-14. DOI: 10.1504/IJISE.2014.060819.
10. Bezsonnyi, V., Tretyakov, O., Ponomarenko, R., Borodych, P., Burmenko, O., & Karpets, K. (2021). Integral'na ocinka ekologichnogo stanu Dniprovs'kogo vodoshovyshha [Environmental risk assessment due to the impact of communal facilities on surface waters]. Problems of Emergency Situations, 2(34), 58-76. DOI: 10.52363/2524-0226-2021-34-5. [in Ukrainian]
11. Bezsonnyi, V., Tretyakov, O., Ponomarenko, R., Kalda, G., & Asotskyi, V. (2021). Monitoryng ekologichnoi' bezpeky vodotokiv za kysnevymy pokaznykamy [Monitoring of ecological safety of watercourses by means of oxygen indicators]. Technogenic and ecological safety, 10(2/2021), 75-83. DOI: 10.52363/2522-1892.2021.2.12. [in Ukrainian]
12. Rezaei, A., Hassani, H., Hassani, S., Jabbari, N., Fard Mousavi, S. B., & Rezaei, S. (2019). Evaluation of Groundwater Quality and Heavy Metal Pollution Indices in Bazman Basin, Southeastern Iran. Groundwater for Sustainable Development, 9, 100245. DOI: 10.1016/j.gsd.2019.100245.
13. Kolyesnik, D., Shmandiy, V., Kharlamova, O., & Rygas, T. (2021). Ocinka stanu ekologichnoi' bezpeky akvatorii' Kremenchuc'kogo vodoshovyshha zadlja zberezhennja landshaftno-biologichnogo riznomanittja v umovah zmin klimatu [Assessment of ecological safety state of the kremenchuk reservoir aquatorium for the preservation of landscape-biological diversity in climate change conditions]. Transactions оf Kremenchuk Mykhailo Ostrohradskyi national university, 3(128), 24-29. DOI: 10.30929/1995-0519.2021.3.24-29. [in Ukrainian]
14. Krainiukov, O. M., & Timchenko, V. D. (2016). Udoskonalennja kompleksnoi' ocinky ekologichnogo stanu ta jakosti vody vodnyh ob’jektiv [Environmental improvement of comprehensive assessment of water quality and water bodies]. Visnyk of V. N. Karazin Kharkiv National University. Series Ecology, 14, 9-14. [in Ukrainian]
15. Anishchenko, L., Polozentseva, V., & Sverdlov, B. (2021). Kompleksna ocinka vplyviv dijuchyh vodojm-nakopychuvachiv na dovkillja [The comprehensive evaluation environmental influence of acting accumulating reservoirs]. Transactions оf Kremenchuk Mykhailo Ostrohradskyi national university, 3(128), 65-74. DOI: 10.30929/1995-0519.2019.5.65-74. [in Ukrainian]
16. Loboda, N. S. & Smalii, O. V. (2019). Rol' prytok Donbasu u formuvanni jakosti poverhnevyh vod richky Sivers'kyj Donec' [Role of tributaries in Donbas in ensuring the quality of the Siverskyi Donets river surface water]. Ukrainian hydrometeorological journal, 24, 64-71. [in Ukrainian]
17. Zalenska, Ye., & Voitenko, L. (2022). Indeksy jakosti vody: adaptacija ta vykorystannja dlja Ukrai'ny [Water quality indices: adaptation and application for Ukraine]. Ecological Sciences: scientific and practical journal, 4(43), 58-64. [in Ukrainian]
18. Muangthong, S., & Shrestha, S. (2015). Assessment of surface water quality using multivariate statistical techniques: case study of the Nampong River and Songkhram River, Thailand. Environmental Monitoring and Assessment, 187(9), 548.
19. Amiri, V., Rezaei, M., & Sohrabi, N. (2014). Groundwater quality assessment using entropy weighted water quality index (EWQI). in Lenjanat, Iran. Environmental Earth Sciences, 72, 3479-3490. DOI: 10.1007/s12665-014-3255-0.
20. Mrunmayee, M., Sahoo, K. C., Patra, J. B., Swain, & Khatua K. K. (2017). Evaluation of water quality with application of Bayes' rule and entropy weight method, European Journal of Environmental and Civil Engineering, 21(6), 730-752. DOI: 10.1080/19648189.2016.1150895.
21. Singh, K. R., Goswami, A. P., Kalamdhad, A. S., & Kumar, B. (2019). Development of irrigation water quality index incorporating information entropy. Environment, Development and Sustainability, 22, 3119-3132. DOI: 10.1007/s10668-019-00338-z.
22. Bezsonnyi, V. L., Tretyakov, O. V., Plyatsuk, L. D., & Nekos, A. N. (2022). Entropijnyj pidhid do ocinky ekologichnogo stanu vodotoku [Entropy approach to assessment of the ecological state of a water course]. Visnyk of V. N. Karazin Kharkiv National University, Series “Еcоlogy”, 27, 6-19. [in Ukrainian]
23. Bezsonnyi, V., Plyatsuk, L., Ponomarenko, R., & Tretyakov, O. (2023). Vyznachennja ekologichnogo stanu Kremenchuc'kogo vodoshovyshha na osnovi informacijnoi' entropii' [Determination of the ecological state of the Kremenchuk Reservoir on the basis of information entropy]. Technogenic and ecological safety, 13(1/2023), 20-26. DOI: 10.52363/2522-1892.2023.1.3. [in Ukrainian]
24. Bezsonnyi, V. L., Plyatsuk, L. D., & Tretyakov, O. V. (2023). Analiz ekologichnogo stanu Kahovs'kogo vodoshovyshha na pidstavi entropijnogo indeksu [Analysis of the environmental state of the Kahav reservoir based on the entropy index]. Collection of Scientific Papers of Admiral Makarov National University of Shipbuilding, 1 (490), 198-208. DOI: 10.15589/znp2023.1(490).24. [in Ukrainian]
25. Singh, V. P., Sivakumar, B., & Cui, H. (2017). Tsallis Entropy Theory for Modeling in Water Engineering: A Review. Entropy, 19, 641.
26. Mirauda, D., De Vincenzo, A., & Pannone, M. (2019). Statistical characterization of flow field structure in evolving braided gravel beds. Spatial Statistics, 34, 100268.
27. Sheikh Khozani, Z., & Wan Mohtar, W. H. M. (2019). Investigation of New Tsallis-Based Equation to Predict Shear Stress Distribution in Circular and Trapezoidal Channels. Entropy, 21, 1046.
28. Leach, J. M., Coulibaly, P., & Guo, Y. (2016). Entropy based groundwater monitoring network design considering spatial distribution of annual recharge. Advances in Water Resources, 96, 108-119.
29. Yeh, H.C., Chen, Y.C., Chang, C.H., Ho, C.H., Wei, C. (2017). Rainfall network optimization using radar and entropy. Entropy, 19, 553.
30. Leach, J. M., Kornelsen, K. C., Samuel, J., & Coulibaly, P. (2015). Hydrometric network design using streamflow signatures and indicators of hydrologic alteration. J. Hydrol., 529, 1350-1359.
31. Li, C., Singh, V. P., & Mishra, A. K. (2012). Entropy theory-based criterion for hydrometric network evaluation and design: Maximum information minimum redundancy. Water Resources Research, 48, W05521.
32. Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2017). Using the Analytic Hierarchy Process to identify parameter weights for developing a water quality index. Ecological Indicators, 75, 220-233.