DETERMINATION OF QUANTITATIVE AND QUALITATIVE ASPECTS OF ENVIRONMENTAL POLLUTION BY THERMAL ENERGY FROM POWER PLANTS WITH RECIPROCATING INTERNAL COMBUSTION ENGINES

PDF(ENGLISH)

 

Kondratenko Olexandr

National University of Civil Protection of Ukraine, Cherkasy, Ukraine

https://orcid.org/0000-0001-9687-0454

 

Koloskov Volodymyr

National University of Civil Protection of Ukraine, Cherkasy, Ukraine

https://orcid.org/0000-0002-9844-1845

 

Koloskova Hanna

National Aerospace University “Kharkiv Aviation Institute”Kharkiv, Ukraine

https://orcid.org/0000-0001-7118-0115

 

 

Lytvynenko Olha

National University of Civil Protection of Ukraine, Cherkasy, Ukraine

https://orcid.org/0000-0003-3322-8805

 

DOI: 10.52363/2522-1892.2025.1.1

 

Keywords: environmental protection technologies, ecological safety, power plants, firefighting and emergency-rescue vehicles, reciprocating internal combustion engines, thermal pollution, complex criteria-based assessment, armed aggression, post-war reconstruction.

 

Abstract

In the article, which shows the results of the authors' own research, the purpose of which was improving the method for taking into account the parameters of the emission of thermal energy in the environment as a pollutant during the criteria-based complex assessment of the ecological safety (ES) level of the exploitation of such power plants (PP), especially taking into account the realities of the functioning of the divisions and institutions of the SES of Ukraine and their units of fire-fighting and emergency rescue vehicles (FERV) in conditions of armed aggression and in the perspective of the post-war reconstruction of critical infrastructure and the economy of our country. Following tasks were consistently solved: development of a method for calculating the values of the complex fuel-ecological criterion taking into account thermal energy emissions in the environment during the operation of FERV with RICE; obtaining the set of initial data for carrying out a calculation study for the standardized steady ESC test cycle and the 2Ch10.5/12 autotractor diesel engine, calculated assessment of the values of the complex fuel-ecological criterion taking into account thermal energy emissions in the environment during the exploitation of FERV with RICE. Problem of the study is the imperfection of existing methods for criteria-based assessment of the ES level of the exploitation of the PP with RICE, especially considering the realities of the functioning of the institutions and divisions of the SES of Ukraine and their FERV units in conditions of armed aggression and in the perspective of the post-war reconstruction of the critical infrastructure and economic of our country. Idea of the study is to improve the methodology for determining the values of the Kfe criterion by expanding the ES factors taken into account by its mathematical apparatus, in particular, emissions of thermal energy into environment. Main task of the study is determination of quantitative and qualitative aspects of the effect of taking into account the emission of thermal energy in the environment during a complex criteria-based assessment of the ES level of the exploitation process of such PP, in particular FERV units, using the steady standardized ESC test cycle (in accordance with UNECE Regulations No. 49) based on the improved mathematical apparatus of the complex fuel-ecological criterion. Object of the study is ES of the exploitation process of PP with RICE, in particular FERV units, taking into account the negative technogenic impact of thermal energy on environmental components. Subject of the study is contribution to the numerical values of the indicators of the object of the study of the emission of thermal energy into the environment. Scientific novelty of the results obtained is the method for taking into account the emission of thermal energy into the environment from PP with RICE, in particular FERV units, in a complex criteria-based assessment of the indicators of the ES level during their exploitation has been further developed. Practical value of the results obtained is the results obtained are suitable for providing a quantitative and qualitative assessment of the studied effects and developing on this basis technical solutions and organizational measures to reduce or eliminate them by developing an appropriate environmental protection technology with executive devices on the methodological basis of the ES management system. 

References

1.     Kondratenko, O., Andronov, V., Koloskov, V., & Strokov, O. (2021). Development and Use of the Index of Particulate Matter Filter Efficiency in Environmental Protection Technology for Diesel-Generator with Consumption of Biofuels. 2021 IEEE KhPI Week on Advanced Technology: Conference Proceedings (13–17 September 2021, NTU «KhPI», Kharkiv), 239–244. DOI: 10.1109/KhPIWeek53812.2021.9570034.

2.     Parsadanov, I. V. (2003). Pidvyshchennia yakosti i konkurentospromozhnosti dyzeliv na osnovi kompleksnoho palyvno-ekolohichnoho kryteriiu: monohrafiia [Improving the quality and competitiveness of diesel engines based on a complex fuel-ecological criterion: monograph]. Kharkiv, Publ. Center of NTU «KhPI». [in Ukrainian]

3.     Kondratenko, O. M. (2019). Metrolohichni aspekty kompleksnoho kryterialnoho otsiniuvannia rivnia ekolohichnoi bezpeky ekspluatatsii porshnevykh dvyhuniv enerhetychnykh ustanovok : monohrafiia [Metrological aspects of a complex criteria-based assessment of the ecological safety level of the exploitation of reciprocating engines of power plants: monograph]. Kharkiv, Publ. Stil-Izdat (FOP Brovin O.V.). [in Ukrainian]

4.     Pro Cili stalogo rozvy`tku Ukrayiny` na period do 2030 roku [On the Sustainable Development Goals of Ukraine for the period up to 2030]. 722/2019 Decree of the President of Ukraine. (2019). URL: https://zakon.rada.gov.ua/laws/show/2697-19. [in Ukrainian]

5.     Pro zatverdzhennya Polozhennya pro organizaciyu ekologichnogo zabezpechennya DSNS Ukrayiny [On approval of the Regulations on the organization of environmental support of the State Emergency Service of Ukraine]. 618 Order of the State Emergency Service of Ukraine. (2013). URL: https://zakon.rada.gov.ua/rada/show/v0618388-13#Text.

6.     Kondratenko, O. M. (2021). Naukovo-metodolohichni osnovy zakhystu atmosfernoho povitria vid tekhnohennoho vplyvu enerhoustanovok z porshnevymy dvyhunamy vnutrishnoho zghoriannia [Scientific and methodological foundations of protecting atmospheric air from the technogenic impact of power plants with internal combustion piston engines]. Kharkiv, NUCP of Ukraine.

7.     United Nations Economic and Social Council Economics Commission for Europe Inland Transport Committee Working Party on the Construction of Vehicles. (2013). Uniform provision concerning the approval of compression ignition (C.I.) and natural gas (NG) engines as well as positive-ignition (P.I.) engines fueled with liquefied petroleum gas (LPG) and vehicles equipped with C.I. and NG engines and P.I. engines fueled with LPG, with regard to the emissions of pollutants by the engine. Regulation 49.

8.     ISO. (2002). ISO 3046-1:2002. Reciprocating internal combustion engines – Performance.

9.     Marchenko, A. P., Parsadanov, I. V., Tovazhnyansky, L. L., & Shekhovtsov, A. F. (2004). Dvyhuny vnutrishnoho zghoriannia: seriia pidruchnykiv u 6 tomakh. T.5. Ekolohizatsiia DVZ [Internal combustion engines: a series of textbooks in 6 volumes. Vol.5. Environmentalization of internal combustion engines]. Kharkiv, Publ. Prapor.

10.  Kondratenko, O. M., Andronov, V. A., Strokov, O. P., Babakin, V. M., & Krasnov, V. A. (2022). Instrumentalna pokhybka vidomykh formul pererakhunku pokaznykiv dymnosti u pokaznyky toksychnosti vidpratsovanykh haziv porshnevykh DVZ [Instrumental error of known formulas for converting opacity indicators into toxicity indicators of exhaust gases of reciprocating ICE]. Technogenic and ecological safety, 12(2/2022), 3–18. DOI: 10.52363/2522-1892.2022.2.1. [in Ukrainian]

11.  Kondratenko, O. M., Krasnov, V. A., & Semykin, V. M. (2023). The place of DPF with a liquid working body in the classification of atmospheric air protection technologies from the complex negative influence of power plants with reciprocation ICE. Technogenic and ecological safety, 14(2/2023), 67–91. DOI: 10.52363/2522-1892.2023.2.8.

12.  Kondratenko, O., Koloskov, V., Kovalenko, S., Derkach, Y., & Strokov, O. (2020). Criteria based assessment of efficiency of conversion of reciprocating ICE of hybrid vehicle on consumption of biofuels. 2020 IEEE KhPI Week on Advanced Technology, KhPI Week 2020, 05–10 October 2020, Conference Proceedings. Kharkiv, 177–182. DOI: 10.1109/KhPIWeek 51551.2020.9250118.

13.  Kondratenko, O., Mishchenko, I., Chernobay, G., Derkach, Yu., & Suchikova, Ya. (2018). Criteria based assessment of the level of ecological safety of exploitation of electric generating power plant that consumes biofuels. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS–2018): Book of Papers, 10–14 September, 2018. Kharkiv, 57-1–57-6. DOI: 10.1109/IEPS.2018.8559570.

14.  Kondratenko, O., & Lytvynenko, O. (2024). Exploring the digital landscape: interdisciplinary perspectives. Monograph. Сhapter 5 «Artificial intelligence and innovative educational approaches in digital society». Subsection 5.6. Ecological safety of transport as a component of national security of Ukraine during armed aggression and as a prerequisite for a «green» transition during post-war reconstruction. Katowice, The University of Technology in Katowice Press, 853–869. URL: http://www.wydawnictwo.wst.pl/uploads/files/ f22f3113112eb3a985d36ee5fcdb6747.pdf. DOI: 10.54264/M036.

15.  Kondratenko, O. M., Koloskov, V. Yu., Derkach, Y. F., & Kovalenko, S. A. (2020). Fizy`chne i matematy`chne modelyuvannya procesiv u fil`trax tverdy`x chasty`nok u prakty`ci kry`terial`nogo ocinyuvannya rivnya ekologichnoyi bezpeky` : monografiya [Physical and mathematical modeling of processes in particulate filters in the practice of criteria-based assessment of the level of environmental safety: monograph]. Kharkiv, Publ. Stil-Izdat (FOP Brovin O.V.), 522 p. [in Ukrainian]

16.  Marchenko, A. P., & Parsadanov, I. V. (2024). Сriteria for assessing the effectiveness of transport power plants decarbonisation in accordance with implementation of the sustainable development concept. Internal Combustion Engines, 1, 3–11. DOI: 10.20998/0419-8719.2024.1.01.

17.  Pro zatverdzhennya pereliku priory`tetny`x tematy`chny`x napryamiv naukovy`x doslidzhen` i naukovo-texnichny`x rozrobok na period do 31 grudnya roku, shho nastaye pislya pry`py`nennya abo skasuvannya voyennogo stanu v Ukrayini [On approval of the list of priority thematic areas of scientific research and scientific and technical developments for the period until December 31 of the year following the termination or abolition of martial law in Ukraine]. 476 Decree of the Cabinet of Ministers of Ukraine. (2024). URL: https://zakon.rada.gov.ua/laws/show/476-2024-%D0%BF#Text. [in Ukrainian]

18.  Specialty passport 21.06.01 «Ecological Safety», approved by the Decree of the Presidium of the Higher Attestation Commission of Ukraine 33-07/7. (2001). URL: https://zakon.rada.gov.ua/rada/show/va7_7330-01#Text.

19.  3D Geometry modelling online free system FreeCAD: official web-site. URL: https://www.freecad.org.

20.  Online free system for modeling the working processes of reciprocating internal combustion engines using digital twins Blitz-PRO: official web-site. URL: http://blitzpro.zeddmalam.com/application/index/signin.

21.  Kapustenko, P., Ocłoń, P., Picón-Núñez, M., Wang, B., & Varbanov, P. S. (2023). Integration and intensification of thermal processes to increase energy efficiency and mitigate environmental pollution for sustainable development of industry – PRES’22. Thermal Science and Engineering Progress, 45, 102148. DOI: 10.1016/j.tsep.2023.102148.

22.  Huang, X., & Li, W. (2025) Landscape renewal design of industrial sites based on environmental thermal sensing and stereoscopic vision: Space thermal energy utilization. Thermal Science and Engineering Progress, 60, 103437. DOI: 10.1016/j.tsep.2025.103437.

23.  Shan, M., Zhang, H., Wang, Y., Qiao, Z., Zuo, J., & Xu, Y. (2025). Estimating environmental impact of rooftop photovoltaic from the perspective of thermal power transmission, Environmental Impact Assessment Review, Vol. 112, 107848. DOI: 10.1016/j.eiar.2025.107848.

24.  Ghasempour, R., Salehi, M., & Fakouriyan, S. (2024). Comprehensive energy, exergy, and environmental evaluation of integrated heat pipe photovoltaic/thermal systems using multi-objective optimization. Applied Thermal Engineering, 257(C), 124402. DOI: 10.1016/j.applthermaleng.2024.124402.

25.  Kim, J., Lee, G., Park, S., & Kang, J. (2025). Mitigating urban heat island effects through leadership in energy and environmental design evaluation and blue-green infrastructure: Applying the hazard capacity factor design model for urban thermal resilience. Sustainable Cities and Society, 124, 106306. DOI: 10.1016/j.scs.2025.106306.

26.  Liu, Y., & Wen, Z. (2024). Green manufacturing process supply chain management based on thermal efficiency improvement and environmental impact assessment technology. Thermal Science and Engineering Progress, 54, 102847. DOI: 10.1016/j.tsep.2024.102847.

27.  Zhu, Y., Yao, Sh., Zhang, Y., & Cao, M. (2024). Environmental and economic scheduling for wind-pumped storage-thermal integrated energy system based on priority ranking. Electric Power Systems Research, 231, 110353. DOI: 10.1016/j.epsr.2024.110353.

28.  Khatib, A., Al-Araj, B., & Salhab, Z. (2024). Long-term monitoring of thermal pollution from Baniyas power plant in the Syrian coastal water using Landsat data. Remote Sensing Applications: Society and Environment, 36, 101287. DOI: 10.1016/j.rsase.2024.101287.

29.  Zhou, Y., Gao, W., Zhang, Y., Tian, Z., Wang, F., & Gao, R. (2024). Experimental investigation on thermodynamic and environmental performance of a novel ocean thermal energy conversion (OTEC)-Air conditioning (AC) system. Energy, 313, 133760. DOI: 10.1016/j.energy.2024.133760.

30.  Sharshir, S. W., Sharaby, M. R., El-Naggar, A. A., Ismail, M., Abd EL-Gawaad, N. S., Al-Dossari, M., El-Samadony M. O. A., & Yuan, Zh. (2025). Augmentation of thermo-environmental performance of hemispherical distiller utilizing low-cost thermal energy storage materials: A comparative study. Journal of Energy Storage, 113, 115619. DOI: 10.1016/j.est.2025.115619.

31.  Luo, J., Xin, Sh., Huang, Y., Hu, Q., Wang, J., & Zhang, Ch. (2025). Quantitative Evaluation of Environmental Influence of Heat Emission from Lake Water Heat Pump. International Journal of Refrigeration, 175, 288–298. DOI: 10.1016/j.ijrefrig.2025.03.027.

32.  Castelluccio, S., Orlandella, I., Fiore, S., & Comoglio, C. (2025). Evaluating the environmental performances of thermal power plants: A study on EMAS registered Italian sites. Journal of Cleaner Production, 490, 144677. DOI: 10.1016/j.jclepro.2025.144677.

33.  Qiu, Y., Ahmad, S. F., & Song, R. (2025). Multi-facet investigation of integrating a multigeneration system and landfill gas-based combustion process using an environmentally friendly thermal design arrangement. Journal of Environmental Chemical Engineering, 13(1), 115241. DOI: 10.1016/j.jece.2024.115241.

34.  Zhu, Z., Xu, Zh., Zhang, B., & Li, X. (2025). Shifting gears in thermal power: Displacement efficiency and environmental impact of wind and solar generation in China. Resources, Conservation and Recycling, 212, 107916. DOI: 10.1016/j.resconrec.2024.107916.

35.  Zhang, S., Zhao, G., Li, Zh., Hu, J., Zhao, Zh., Yao, J., Cheng, N., & Zhang, Zh. (2025). Flexible biomass-based phase change materials: L-N-Ti for environmentally friendly thermal management. Solar Energy Materials and Solar Cells, 285, 113552. DOI: 10.1016/j.solmat.2025.113552.

36.  Rao, F., Xiao, P., Zhang, Y., & Lai, D. (2024). Unravelling key environmental factors influencing urban park visits: Thermal comfort and air quality. Urban Climate, 57, 102096. DOI: 10.1016/j.uclim.2024.102096.

37.  Castelluccio, S., Fiore, S., & Comoglio, C. (2024). Environmental reporting in Italian thermal power plants: insights from a comprehensive analysis of EMAS environmental statements. Journal of Environmental Management, 359, 121035. DOI: 10.1016/j.jenvman.2024.121035.

38.  Zihao, M., Farouk, N., Singh, P. K., Abed, A. M., Samad, S., Babiker, S. G., Shernazarov, I., Hendy, A., Almadhor, A., Bouallegue, B., & Afzal, A. R. (2025). Multi-thermal recovery layout for a sustainable power and cooling production by biomass-based multi-generation system: Techno-economic-environmental analysis and ANN-GA optimization. Case Studies in Thermal Engineering, 65, 105589. DOI: 10.1016/j.csite.2024.105589.

39.  Liu, L., Liu, W., Yao, J., Jia, T., Zhao, Y., & Dai, Y. (2024). Life cycle energy, economic, and environmental analysis for the direct-expansion photovoltaic-thermal heat pump system in China. Journal of Cleaner Production, 434, 139730. DOI: 10.1016/j.jclepro.2023.139730.

40.  Ran, P., Ou, Y. F., Zhang, Ch. Y., & Chen, Y. T. (2024). Energy, exergy, economic, and life cycle environmental analysis of a novel biogas-fueled solid oxide fuel cell hybrid power generation system assisted with solar thermal energy storage unit. Applied Energy, 358, 122618. DOI: 10.1016/j.apenergy.2024.122618.

41.  Alomar, O. R., Ali, B. M., Ali, O. M., & Mustafa, A. N. (2024). Impacts of environmental conditions on thermal, emissions and economic performance of gas turbine using different types of fuels: An experimental investigation. Results in Engineering, 24, 103402. DOI: 10.1016/j.rineng.2024.103402.

42.  Zhao, Ch., Zhao, Y., Lin, K., Wang, Zh., & Zhou, T. (2023). Comprehensive assessment of thermal characteristics, kinetics and environmental impacts of municipal solid waste incineration fly ash during thermal treatment. Process Safety and Environmental Protection, 175, 619–631. DOI: 10.1016/j.psep.2023.05.074.

43.  Wang, Sh., Cheng, M., Xie, M., Yang, Y., Liu, T., Zhou, T., Cen, Q., Liu, Z., & Li, B. (2025). From waste to energy: Comprehensive understanding of the thermal-chemical utilization techniques for waste tire recycling. Renewable and Sustainable Energy Reviews, 211, 115354. DOI: 10.1016/j.rser.2025.115354.

44.  Zhang, Y., Chen, Y., Qiu, X. Ch., Tian, Zh., Peng, H., & Gao, W. (2024). Experimental study and performance comparison of a 1 kW-class solar-ocean thermal energy conversion system integrated air conditioning: Energy, exergy, economic, and environmental (4E) analysis. Journal of Cleaner Production, 451, 142033. DOI: 10.1016/j.jclepro.2024.142033.

45.  Vig, N., Ravindra, Kh., & Mor, S. (2023). Environmental impacts of Indian coal thermal power plants and associated human health risk to the nearby residential communities: A potential review. Chemosphere, 341, 140103. DOI: 10.1016/j.chemosphere.2023.140103.

46.  Shahid, M. I., Farhan, M., Rao, A., Salam, H. A., Chen, T., Xiao, Q., Li, X., & Ma, F. (2025). Optimization of hydrogen production and system efficiency enhancement through exhaust heat utilization in hydrogen-enriched internal combustion engine. Energy, 319, 135051. DOI: 10.1016/j.energy.2025.135051.

47.  Zoghi, M., Hosseinzadeh, N., Gharaie, S., & Zare, A. (2025). Waste heat recovery of a combined internal combustion engine and inverse brayton cycle for hydrogen and freshwater outputs: 4E optimization and comparison. Energy Nexus, 17, 100356. DOI: 10.1016/j.nexus.2024.100356.

48.  Shahid, M. I., Rao, A., Farhan, M., Liu, Y., & Ma, F. (2024). Comparative analysis of different heat transfer models, energy and exergy analysis for hydrogen-enriched internal combustion engine under different operation conditions. Applied Thermal Engineering, 247, 123004. DOI: 10.1016/j.applthermaleng.2024.123004.

49.  Leng, Sh., Xu, Sh., Li, Ch., Ha, Ch., Liu, Z., Qin, J., Wang, Z., Wang, J., Chen, Zh., & Liao, M. (2025). Performance analysis of an internal combustion engine with thermochemical recovery and high temperature proton exchange membrane fuel cell combined power generation system. Fuel, 384, 133913. DOI: 10.1016/j.fuel.2024.133913.

50.  Kornienko, V., Radchenko, M., Radchenko, R., Pavlenko, A., & Radchenko, A. (2025). A new trend in combustion engine’s deep waste heat recovery by application of condensing economizers in exhaust boilers. Applied Thermal Engineering, 261, 125150. DOI: 10.1016/j.applthermaleng.2024.125150.

51.  de Araújo, L. R., Morawski, A. P., Barone, M. A., Rocha, H. R. O., Donatelli, J. L. M., & Santos, J. J. C. S. (2022). Response surface methods based in artificial intelligence for superstructure thermoeconomic optimization of waste heat recovery systems in a large internal combustion engine. Energy Conversion and Management, 271, 116275. DOI: 10.1016/j.enconman.2022.116275.

52.  Dadpour, D., Deymi-Dashtebayaz, M., Hoseini-Modaghegh, A., Abbaszadeh-Bajgiran, M., Soltaniyan, S., & Tayyeban, E. (2022). Proposing a new method for waste heat recovery from the internal combustion engine for the double-effect direct-fired absorption chiller. Applied Thermal Engineering, 216, 119114. DOI: 10.1016/j.applthermaleng.2022.119114.

53.  Omara, A. A. M. (2021). Phase change materials for waste heat recovery in internal combustion engines: A review. Journal of Energy Storage, 44(B), 103421. DOI: 10.1016/j.est.2021.103421.

54.  Asadi, M., Deymi-Dashtebayaz, M., & Rad, E. A. (2022). Comparing the profitability of waste heat electricity generation of internal combustion engines: An exergoeconomic analysis through optimization of two different organic Rankine cycle scenarios. Applied Thermal Engineering, 211, 118443. DOI: 10.1016/j.applthermaleng.2022.118443.

55.  Fini, A. T., Hashemi, S. A., & Fattahi, A. (2022). On the efficient topology of the exhaust heat exchangers equipped with thermoelectric generators for an internal combustion engine. Energy Conversion and Management, 268, 115966. DOI: 10.1016/j.enconman.2022.115966.

56.  Alklaibi, A. M., & Lior, N. (2021). Waste heat utilization from internal combustion engines for power augmentation and refrigeration. Renewable and Sustainable Energy Reviews, 152, 111629. DOI: 10.1016/j.rser.2021.111629.

57.  Vančura, J., Kroulíková, T., Bartuli, E., Kůdelová, T., & Vondruš, J. (2025). Polymeric hollow fibre heat exchanger for reducing vehicle CO2 pollution. Applied Thermal Engineering, 270, 126180. DOI: 10.1016/j.applthermaleng.2025.126180.

58.  Arbabi, P., Abbassi, A., Mansoori, Z., & Seyfi, M. (2017). Joint numerical-technical analysis and economical evaluation of applying small internal combustion engines in combined heat and power (CHP). Applied Thermal Engineering, 113, 694–704. DOI: 10.1016/j.applthermaleng.2016.11.064.

59.  Shu, G., Wang, X., & Tia, H. (2016). Theoretical analysis and comparison of rankine cycle and different organic rankine cycles as waste heat recovery system for a large gaseous fuel internal combustion engine. Applied Thermal Engineering, 108, 525–537. DOI: 10.1016/j.applthermaleng.2016.07.070.

60.  Raznoshinskaia, A. V. (2015). The Research of Influence Characteristics of Heat-storage Material on Thermodynamic Process in Heat Storage, Installed in System of Waste-heat Recovery of Internal Combustion Engines. Procedia Engineering, 129, 140–144. DOI: 10.1016/j.proeng.2015.12.022.

61.  Pandey, K. K. (2024). Study on the integration of hydrogen in a multi-cylinder low heat rejection diesel engine using a ternary blend. Atmospheric Pollution Research, 15(10), 102250. DOI: 10.1016/j.apr.2024.102250.

62.  Pandey, K. K. (2024). Application of acetylene in multi-cylinder low heat rejection diesel engine fueled with ternary blend. Energy, 311, 133368. DOI: 10.1016/j.energy.2024.133368.