RESEARCH ON THE IMPACT OF LITHIUM ON THE ENVIRONMENT AND OCCUPATIONAL HEALTH

PDF(UKRAINIAN)

 

Tsymbal Bohdan 

National University of Civil Protection of Ukraine, Cherkasy, Ukraine

LIMITED LIABILITY COMPANY “TECHNICAL UNIVERSITY ‘METINVEST POLYTECHNIC’”, Zaporizhzhia, Ukraine

https://orcid.org/0000-0002-2317-3428

 

Rybalova Olga

National University of Civil Protection of Ukraine, Cherkasy, Ukraine

http://orcid.org/0000-0002-8798-4780

 

Sula Volodymyr

Ivan Kozhedub Kharkiv National Air Force University, Kharkiv, Ukraine

https://orcid.org/0009-0005-4233-5698

 

 

DOI: 10.52363/2522-1892.2025.1.3

 

Keywords: economic assessment, risk, infectious morbidity, recreational water use, Kharkiv, Ukraine

 

Abstract

The aim of this study is to assess the environmental impact of lithium extraction and usage, as well as to examine its effects on workers' occupational health. Given the growing demand for lithium-ion batteries and other technological applications of this metal, special attention is paid to minimizing negative environmental consequences and developing measures to protect workers' health.

The research methodology is based on a comprehensive approach that includes environmental monitoring data analysis, biomedical studies, and the development of technological solutions to minimize the impact of lithium extraction. The study evaluates the level of contamination in water and soil ecosystems, identifies potential risks to biodiversity and human health, and applies life cycle assessment (LCA) to evaluate the impact of lithium-ion battery production, usage, and disposal on climate change.

The results of the study indicate that lithium extraction and processing significantly increase the concentration of toxic substances in the environment, negatively affecting water resources, soil, and the atmosphere. High concentrations of lithium compounds have been found to cause the death of aquatic organisms, alter the chemical composition of water, and contribute to soil degradation. Proposed technological solutions to mitigate these negative effects include closed-loop hydrometallurgical cycles, wastewater treatment systems, dust collection installations, and bioengineering methods for land reclamation.

The study's limitations are related to the lack of long-term data on the impact of lithium waste on the environment and human health, as well as the variability of mining conditions in different regions. The main assumptions include the stability of existing lithium extraction and processing technologies and the constancy of regulatory standards in the medium-term perspective.

The practical significance of this work lies in the development of specific measures to reduce the environmental burden of lithium extraction and improve working conditions for those employed in this field. The proposed solutions can be utilized by enterprises to optimize technological processes and implement environmentally safe working methods.

The scientific novelty of the study lies in the integrated assessment of lithium's impact on the environment and occupational health, as well as the development of innovative technologies to reduce its harmful effects. Critical aspects of lithium extraction that require further research and the implementation of new risk-minimization approaches have been identified.

 

References

1.         The impact of lithium mining on the environment, what’s behind clean energy? URL: https://www.lithiumbatterytech.com/the-impact-of-lithium-mining-on-the-environment/.

2.         Khaustov, V. (2024). Prospects for the development of lithium ore mining and production of lithium containing products in Ukraine. Scientific Bulletin of International Association of Scientists. Series: Economy, Management, Security, Technologies, 3(2). DOI: 10.56197/2786-5827/2024-3-2-5.

3.         Xiaodong, S., & Ishchenko, V. A. (2023). Waste lithium-ion batteries management in China. Visnyk of Vinnytsia Polytechnic Institute, 167(2), 21–27. DOI: 10.31649/1997-9266-2023-167-2-21-27.

4.         Bilous, O. I., Slobodian, B. I., & Parfeniuk, V. O. (2024). Litiyevi pegmaty`ty` Ukrayiny`: Problemy` i perevagy` osvoyennya rodovy`shh [Ukraine’s lithium pegmatites: issues and advantages of field development]. Mineral resources of Ukraine, (2), 3–9. DOI: 10.31996/mru.2024.2.3-9. [in Ukrainian]

5.         Kushnirenko, O., Venger, V., & Romanovska, N. (2024). Prospects and restrictions for the development of the lithium industry in ukraine. Scientific Bulletin of International Association of Scientists. Series: Economy, Management, Security, Technologies, 3(4). DOI: 10.56197/2786-5827/2024-3-4-2.

6.         Andrusyshyna, I. M., & Barykin, M. A. (2022). Lithium as a risk factor for human health and modern environmental pollution sources (literature review). Ukrainian Journal of Occupational Health, 2022(3), 253–262. DOI: 10.33573/ujoh2022.03.253.

7.         Hurkov, A. (2020). U Nimechchyni vydobuvatymut litij bez shkody dlya pryrody? [Will lithium be mined in Germany without harming the environment?]. Deutsche Welle. URL: https://p.dw.com/p/3foLa. [in Ukrainian]

8.         Bozhko, V. I., & Cherepakha, A. S. (2024). Vyznachennya vplyvu litij-ionnykh akumulyatoriv na dovkillya protyagom zhyttyevogo cyklu transportnykh zasobiv [Determination of the impact of lithium-ion batteries on the environment during the life cycle of vehicles]. Collection of materials of the 86th International Student Scientific Conference of the University. Section of the Department of Ecology. Kharkiv, KhNADU, 5–9. URL: https://dspace.khadi.kharkov.ua/items/7f11b6b1-5b98-4a04-9b55-c3e880acf700. [in Ukrainian]

9.         Katenin, V., Vasylenko, A., Gryn, S. (2018). Kryza litiyevykh akumulyatoriv [The lithium battery crisis]. Molody Vcheny, 10 (62), 425-428. URL: https://molodyivchenyi.ua/index.php/journal/article/view/3800. [in Ukrainian]

10.       Shpontak, Yu. M. (2024). Ryzyky ta vyklyky rozvytku alternatyvnoyi energetyky ta novoyi energetychnoyi ekonomiky [Risks and challenges of the development of alternative energy and the new energy economy]. Efektyvna ekonomika, (4). DOI: 10.32702/2307-2105.2024.4.85. [in Ukrainian]

11.       Kaunda, R. B. (2020). Potential environmental impacts of lithium mining. Journal of Energy & Natural Resources Law, 38(3), 237–244. DOI: 10.1080/02646811.2020.1754596.

12.       Vera, M. L., Torres, W. R., Galli, C. I., Chagnes, A., & Flexer, V. (2023). Environmental impact of direct lithium extraction from brines. Nature Reviews Earth & Environment. DOI: 10.1038/s43017-022-00387-5

13.       Flexer, V., Baspineiro, C. F., & Galli, C. I. (2018). Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of the Total Environment, 639, 1188–1204. DOI: 10.1016/j.scitotenv.2018.05.223.

14.       Agusdinata, D. B., Liu, W., Eakin, H., & Romero, H. (2018). Socio-environmental impacts of lithium mineral extraction: Towards a research agenda. Environmental Research Letters, 13(12), 123001. DOI: 10.1088/1748-9326/aae9b1.

15.       Wanger, T. C. (2011). The Lithium future-resources, recycling, and the environment. Conservation Letters, 4(3), 202–206. DOI: 10.1111/j.1755-263x.2011.00166.x.

16.       Giglio, E. (2021). Extractivism and its socio-environmental impact in South America. Overview of the “lithium triangle”. América Crítica, 5(1), 47-53. DOI: 10.13125/americacritica/4926.

17.       Balaram, V., Santosh, M., Satyanarayanan, M., Srinivas, N., & Gupta, H. (2024). Lithium: A review of applications, occurrence, exploration, extraction, rercycling, analysis, and environmental impact. Geoscience Frontiers, 101868. DOI: 10.1016/j.gsf.2024.101868.

18.       Mousavinezhad, S., Nili, S., Fahimi, A., & Vahidi, E. (2024). Environmental impact assessment of direct lithium extraction from brine resources: Global warming potential, land use, water consumption, and charting sustainable scenarios. Resources, Conservation and Recycling, 205, 107583. DOI: 10.1016/j.resconrec.2024.107583.

19.       Khakmardan, S., Rolinck, M., Cerdas, F., Herrmann, C., Giurco, D., Crawford, R., & Li, W. (2023). Comparative life cycle assessment of lithium mining, extraction, and refining technologies: A global perspective. Procedia CIRP, 116, 606–611. DOI: 10.1016/j.procir.2023.02.102.

20.       Negrete, M., Fuentes, M., Kraslawski, A., Irarrazaval, F., & Herrera-León, S. (2024). Socio-environmental implications of the decarbonization of copper and lithium mining and mineral processing. Resources Policy, 95, 105135. DOI: 10.1016/j.resourpol.2024.105135.

21.       Petavratzi, E., Sanchez-Lopez, D., Hughes, A., Stacey, J., Ford, J., & Butcher, A. (2022). The impacts of environmental, social and governance (ESG) issues in achieving sustainable lithium supply in the Lithium Triangle. Mineral Economics. DOI: 10.1007/s13563-022-00332-4.

22.       Jiang, S., Zhang, L., Li, F., Hua, H., Liu, X., Yuan, Z., & Wu, H. (2020). Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment. Journal of Environmental Management, 262, 110253. DOI: 10.1016/j.jenvman.2020.110253.

23.       Díaz Paz, W. F., Escosteguy, M., Seghezzo, L., Hufty, M., Kruse, E., & Iribarnegaray, M. A. (2023). Lithium mining, water resources, and socio-economic issues in northern Argentina: We are not all in the same boat. Resources Policy, 81, 103288. DOI: 10.1016/j.resourpol.2022.103288

24.       Chaves, C., Pereira, E., Ferreira, P., & Guerner Dias, A. (2021). Concerns about lithium extraction: A review and application for Portugal. The Extractive Industries and Society, 8(3), 100928. DOI: 10.1016/j.exis.2021.100928.

25.       Chordia, M., Wickerts, S., Nordelöf, A., & Arvidsson, R. (2022). Life cycle environmental impacts of current and future battery-grade lithium supply from brine and spodumene. Resources, Conservation and Recycling, 187, 106634. DOI: 10.1016/j.resconrec.2022.106634.

26.       Sankar, T. K., Abhilash & Meshram, P. (2023). Environmental impact assessment in the entire life cycle of lithium-ion batteries. Reviews of Environmental Contamination and Toxicology, 262(1). DOI: 10.1007/s44169-023-00054-w.

27.       Feng, Y., Feng, D., Li, W., Zhang, Q., Chen, W.-Q., & Wang, P. (2024). Environmental impacts of lithium supply chains from Australia to China. Environmental Research Letters. DOI: 10.1088/1748-9326/ad69ac.

28.       Đorđević, D., Tadić, J. M., Grgur, B., Ristić, R., Sakan, S., Brezjanović, J., Stevanović, V., & Šolaja, B. (2024). The influence of exploration activities of a potential lithium mine to the environment in Western Serbia. Scientific Reports, 14(1). DOI: 10.1038/s41598-024-68072-9.

29.       Parker, S. S., Clifford, M. J., & Cohen, B. S. (2024). Potential impacts of proposed lithium extraction on biodiversity and conservation in the contiguous United States. Science of the Total Environment, 911, 168639. DOI: 10.1016/j.scitotenv.2023.168639.

30.       Wolters, L., & Brusselaers, J. (2024). The energy transition paradox: How lithium extraction puts pressure on environment, society, and politics. The Extractive Industries and Society, 19, 101498. DOI: 10.1016/j.exis.2024.101498.

31.       Krishnan, R., & Gopan, G. (2024). A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations. Cleaner Engineering and Technology, 100749. DOI: 10.1016/j.clet.2024.100749.

32.       Blair, J. J. A., Vineyard, N., Mulvaney, D., Cantor, A., Sharbat, A., Berry, K., Bartholomew, E., & Ornelas, A. F. (2024). Lithium and water: Hydrosocial impacts across the life cycle of energy storage. WIREs Water. DOI: 10.1002/wat2.1748.

33.       Vivoda, V., Bazilian, M. D., Khadim, A., Ralph, N., & Krame, G. (2024). Lithium nexus: Energy, geopolitics, and socio-environmental impacts in Mexico's Sonora project. Energy Research & Social Science, 108, 103393. DOI: 10.1016/j.erss.2023.103393.

34.       Souza, R. G., Domingues, A. M., Spindlegger, A., Mair-Bauernfeind, C., & Part, F. (2025). Review of the current knowledge and identified gaps in assessing the social and environmental impacts of mining processes in the Lithium Triangle. Sustainable Production and Consumption, 53, 40–63. DOI: 10.1016/j.spc.2024.11.031.

35.       Sakunai, T., Ito, L., & Tokai, A. (2021). Environmental impact assessment on production and material supply stages of lithium-ion batteries with increasing demands for electric vehicles. Journal of Material Cycles and Waste Management, 23(2), 470–479. DOI: 10.1007/s10163-020-01166-4.