DEVELOPMENT OF THE MOBILE DISASSEMBLY TEST BENCH FOR EXPERIMENTAL STUDY  OF THE ECOLOGICAL SAFETY LEVEL OF EXPLOITATION OF FIREFIGHTING AND EMERGENCY-RESCUE EQUIPMENT WITH RECIPROCATING ICE AND THE PERFORMANCE CHARACTERISTICS OF THE EXECUTIVE DEVICES OF EPT

PDF(ENGLISH)

 

Kondratenko Olexandr

National University of Civil Protection of Ukraine, Cherkasy, Ukraine

https://orcid.org/0000-0001-9687-0454

 

Krasnov Viacheslav

National University of Civil Protection of Ukraine, Cherkasy, Ukraine

https://orcid.org/0000-0002-8445-6843

 

 

DOI: 10.52363/2522-1892.2025.1.4

 

Keywords: environmental protection technologies, executive devices, ecological safety, power plants, firefighting and emergency-rescue equipment, reciprocating internal combustion engines, firefighting and emergency-rescue vehicles, mobile disassembly test bench, armed aggression, post war reconstruction

 

Abstract

In the article, which shows the results of the authors' own research, the purpose of which was to improve the ES indicators of PP with RICE exploitation process, particularly for FERV of departments of SES of Ukraine and other institutions of security and defense sector, by developing the portable disassembly test bench for experimental studying the technical-economical and ecological characteristics of such PP with RICE, including FERV, and the performance indicators of executive devices of ETP during the times of armed aggression and in the post-war reconstruction of the country's economy and infrastructure. Following tasks were consistently solved: analysis of scientific and technical, reference, normative, and patent literature about design of test equipment for experimental researches of technical-economic and ecological indicators of PP with RICE and efficiency and performance indicators of executive devices of EPT; developing of design and geometric model of MDTB; manufacturing of MDTB; analysis of metrology parameters of mobile disassembly test bench. Problem of the study. The absence of a mobile disassembly complex of measurement equipment suitable for experimental studying the technical-economical and ecological characteristics of PP with RICE, including FERV of SES of Ukraine divisions, and the performance indicators of executive devices of ETP in remote and conflict-affected areas. Idea of the study. Developing of the mobile quickly deployable and universal test bench with all necessary instruments for direct and indirect measurement of RICE of PP, including FERV, ES of its exploitation process indicators and EPT executive devices efficiency indicators usable for providing of complex criteria-based assessment and verification of mathematical models of its operation processes which is can by made of non-deficient materials and is distinguished by its simplicity of design and high manufacturability and is suitable for use in remote and conflict-affected areas. Object of the study. Complex of technical-economical and ES factors of exploitation process of PP with RICE, including FERV of units of subdivisions of SES of Ukraine, in both regular conditions and in remote and conflict-affected areas, as well as efficiency and performance indicators of executive devices of EPT, as factors for complex criteria-based assessment of ES level and verification of mathematical models of this processes. Subject of the study. Design, metrology and performance parameters of mobile disassembly test bench for experimentally determining the physical quantities of the object of the study. Scientific novelty of the research results – the concept of design and method of application of mobile disassembly complex of measuring devices for experimental researching of technical-economic and ecological indicators of exploitation process of PP with RICE, as well as efficiency and performance indicators of executive devices of its EPT, as factors for complex criteria-based assessment of ES level and verification of mathematical models of such processes has gained further development, in terms of adaptation for FERV units of the SES of Ukraine remote departments affected by armed aggression. Practical significance of the research results – developed MDTB is suitable for performing of experimental researching of worded above indicators of FERV units which are both in regular exploitation process and in conditions of remote departments in conflict-affected areas with ensuring compliance with the «Regulations on Environmental Safety for the State Emergency Service of Ukraine» approved by Order № 618 on 20/09/2013 during armed aggression and during the period of post-war reconstruction of the country's economy and infrastructure. 

 

References

1.     Kondratenko, O. M., Krasnov, V. A., & Semykin, V. M. (2023). The place of DPF with a liquid working body in the classification of atmospheric air protection technologies from the complex negative influence of power plants with reciprocation ICE. Technogenic and ecological safety, 14(2/2023), 67–91. DOI: 10.52363/2522-1892.2023.2.8.

2.     Kondratenko, O., Andronov, V., Koloskov, V., & Strokov, O. (2021). Development and Use of the Index of Particulate Matter Filter Efficiency in Environmental Protection Technology for Diesel-Generator with Consumption of Biofuels. 2021 IEEE KhPI Week on Advanced Technology: Conference Proceedings (13–17 September 2021, NTU «KhPI», Kharkiv), 239–244. DOI: 10.1109/KhPIWeek53812.2021.9570034.

3.     Kondratenko, O. M., Andronov, V. A., Strokov, O. P., Babakin, V. M., & Krasnov, V. A. (2022). Instrumentalna pokhybka vidomykh formul pererakhunku pokaznykiv dymnosti u pokaznyky toksychnosti vidpratsovanykh haziv porshnevykh DVZ [Instrumental error of known formulas for converting opacity indicators into toxicity indicators of exhaust gases of reciprocating ICE]. Technogenic and ecological safety, 12(2/2022), 3–18. DOI: 10.52363/2522-1892.2022.2.1. [in Ukrainian]

4.     Pro zatverdzhennya Polozhennya pro organizaciyu ekologichnogo zabezpechennya DSNS Ukrayiny [On approval of the Regulations on the organization of environmental support of the State Emergency Service of Ukraine]. 618 Order of the State Emergency Service of Ukraine. (2013). URL: https://zakon.rada.gov.ua/rada/show/v0618388-13#Text.

5.     United Nations Economic and Social Council Economics Commission for Europe Inland Transport Committee Working Party on the Construction of Vehicles. (2013). Uniform provision concerning the approval of compression ignition (C.I.) and natural gas (NG) engines as well as positive-ignition (P.I.) engines fueled with liquefied petroleum gas (LPG) and vehicles equipped with C.I. and NG engines and P.I. engines fueled with LPG, with regard to the emissions of pollutants by the engine. Regulation 49.

6.     Pro Cili stalogo rozvy`tku Ukrayiny` na period do 2030 roku [On the Sustainable Development Goals of Ukraine for the period up to 2030]. 722/2019 Decree of the President of Ukraine. (2019). URL: https://zakon.rada.gov.ua/laws/show/2697-19. [in Ukrainian]

7.     Krasnov, V. A., & Kondratenko, O. M. (2024). Portable test bench for experimental research of the working characteristics of executive elements of environmental protection technologies against the influence of power plants with reciprocating ICE. Ecological security in wartime conditions: collection of abstracts of the V International Scientific and Practical Conference, 21/11/2024. Lviv State University of Civil Engineering, 45–47.

8.     Krasnov, V. A., & Kondratenko, O. M. (2024). Mobile test bench for experimental research of operating characteristics of actuators of environmental protection technologies against the impact of reciprocating internal combustion engines [Mobilnyi vyprobuvalnyi stend dlia eksperymentalnoho doslidzhennia robochykh kharakterystyk vykonavchykh elementiv tekhnolohii zakhystu dovkillia vid vplyvu porshnevykh DVZ]. Materials of the All-Ukrainian Scientific and Practical Internet Conference of Higher Education Students and Young Scientists «Metrological Aspects of Decision-Making in Conditions of Work at Technogenically Hazardous Facilities», 05/11/2024. KhNADU, Kharkiv, 60–65.

9.     Kondratenko, O., & Lytvynenko, O. (2024). Exploring the digital landscape: interdisciplinary perspectives. Monograph. Сhapter 5 «Artificial intelligence and innovative educational approaches in digital society». Subsection 5.6. Ecological safety of transport as a component of national security of Ukraine during armed aggression and as a prerequisite for a «green» transition during post-war reconstruction. Katowice, The University of Technology in Katowice Press, 853–869. URL: http://www.wydawnictwo.wst.pl/uploads/files/ f22f3113112eb3a985d36ee5fcdb6747.pdf. DOI: 10.54264/M036.

10.  Marchenko, A. P., & Parsadanov, I. V. (2024). Сriteria for assessing the effectiveness of transport power plants decarbonisation in accordance with implementation of the sustainable development concept. Internal Combustion Engines, 1, 3–11. DOI: 10.20998/0419-8719.2024.1.01.

11.  Pro zatverdzhennya pereliku priory`tetny`x tematy`chny`x napryamiv naukovy`x doslidzhen` i naukovo-texnichny`x rozrobok na period do 31 grudnya roku, shho nastaye pislya pry`py`nennya abo skasuvannya voyennogo stanu v Ukrayini [On approval of the list of priority thematic areas of scientific research and scientific and technical developments for the period until December 31 of the year following the termination or abolition of martial law in Ukraine]. 476 Decree of the Cabinet of Ministers of Ukraine. (2024). URL: https://zakon.rada.gov.ua/laws/show/476-2024-%D0%BF#Text. [in Ukrainian]

12.  Specialty passport 21.06.01 «Ecological Safety», approved by the Decree of the Presidium of the Higher Attestation Commission of Ukraine 33-07/7. (2001). URL: https://zakon.rada.gov.ua/rada/show/va7_7330-01#Text.

13.  Kondratenko, O. M. (2021). Naukovo-metodolohichni osnovy zakhystu atmosfernoho povitria vid tekhnohennoho vplyvu enerhoustanovok z porshnevymy dvyhunamy vnutrishnoho zghoriannia [Scientific and methodological foundations of protecting atmospheric air from the technogenic impact of power plants with internal combustion piston engines]. Kharkiv, NUCP of Ukraine.

14.  Polyv’yanchuk, A. P. (2013) Naukovo-praktychni osnovy pidvyshchennia efektyvnosti vyznachennia vykydiv tverdykh chastynok z vidpratsovanymy hazamy dyzelia [Scientific and practical foundations of increasing the efficiency of determining particulate emissions from diesel exhaust gases]. Lugansk, V. Dal’s State University.

15.  Keller, M., Ritter, D., Schmitt, L., Hänggi, S., Onder, Ch., Abel, D., & Albin, Th. (2020). Teaching Nonlinear Model Predictive Control with MATLAB/Simulink and an Internal Combustion Engine Test Bench. IFAC-PapersOnLine, 53(2), 17190–17197. DOI: 10.1016/j.ifacol.2020.12.1733.

16.  Passenbrunner, T. E., Formentin, S., Savaresi, S. M., & del Re, L. (2014). Direct multivariable controller tuning for internal combustion engine test benches. Control Engineering Practice, 29, 115–122. DOI: 10.1016/j.conengprac.2014.04.009.

17.  Ruan, D., Xie, H., Song, K., Zhang, G., & Tong, Q. (2018). MAP Learning and Disturbance Observation based Engine Torque Control for Dynamometer Test Bench. IFAC-PapersOnLine, 51(31), 833–839. DOI: 10.1016/j.ifacol.2018.10.117.

18.  Passenbrunner, T. E., Sassano, M., & del Re, L. (2013). Optimal Control of Internal Combustion Engine Test Benches equipped with Hydrodynamic Dynamometers. IFAC Proceedings Volumes, 46(21), 576–581. DOI: 10.3182/20130904-4-JP-2042.00010.

19.  Laila, D. Sh., & Gruenbacher, E. (2016). Nonlinear output feedback and periodic disturbance attenuation for setpoint tracking of a combustion engine test bench. Automatica, 64, 29–36. DOI: 10.1016/j.automatica.2015.10.054.

20.  Sarotte, C., Marzat, J., Lahanier, H. P., Galeotta, M., & Ordonneau, G. (2019). Cryogenic Liquid Rocket Engine Test Bench Fault-Tolerant Control System: Cooling System Application. IFAC-PapersOnLine, 52(12), 280–285. DOI: 10.1016/j.ifacol.2019.11.256.

21.  Laila, D. Sh., & Grünbacher, E. (2008). Nonlinear observer and output feedback design for a combustion engine test bench. IFAC Proceedings Volumes, 41(2), 3842–3847. DOI: 10.3182/20080706-5-KR-1001.00646.

22.  Laila, D. Sh., Grünbacher, E., & del Re, L. (2007). Discrete-time model reference controller design for a combustion engine test bench. IFAC Proceedings Volumes, 40(12), 1185–1190. DOI: 10.3182/20070822-3-ZA-2920.00196.

23.  Chauvin, J., Moulin, P., Corde, G., Petit, N., & Rouchon, P. (2005). Real-time nonlinear individual cylinder air fuel ratio observer on a diesel engine test bench. IFAC Proceedings Volumes, 38(1), 194–199. DOI: 10.3182/20050703-6-CZ-1902.01920.

24.  Boverie, S., Dubois, D., Guérandel, X., de Mouzon, O., & Prade, H. (2002). Possibilistic causal diagnosis: application to engine dyno test benches. IFAC Proceedings Volumes, 35(1), 413–418. DOI: 10.3182/20020721-6-ES-1901.00800.

25.  Besser, Ch., Steinschütz, K., Dörr, N., Novotny-Farkas, F., & Allmaier, G. (2014). Impact of engine oil degradation on wear and corrosion caused by acetic acid evaluated by chassis dynamometer bench tests. Wear, 317(1–2), 64–76. DOI: 10.1016/j.wear.2014.05.005.

26.  Sgroi, M. F., Asti, M., Gili, F., Deorsola, F. A., Bensaid, S., Fino, D., Kraft, G., Garcia, I., & Dassenoy, F. (2017). Engine bench and road testing of an engine oil containing MoS2 particles as nano-additive for friction reduction. Tribology International, 105, 317–325. DOI: 10.1016/j.triboint.2016.10.013.

27.  Maroto-Centeno, J.-A., Pérez-Gutiérrez, T., Fernández-Ruíz-Morón, L., & Quesada-Pérez, M. (2016). Prediction of fuel economy performance of engine lubricants based on laboratory bench tests. Tribology International, 94, 67–70. DOI: 10.1016/j.triboint.2015.07.041.

28.  Forte, C. F., Catellani, C., Cazzoli, G., Bianchi, G. M., Falfari, S., Brusiani, F., Verzè, A., & Saracino, S. (2015). Numerical Evaluation of the Applicability of Steady Test Bench Swirl Ratios to Diesel Engine Dynamic Conditions. Energy Procedia, 81, 732–741. DOI: 10.1016/j.egypro.2015.12.079.

29.  Shibata, G., Eijima, W., Koiwai, R., Shimizu, K.-i., Nakasaka, Y., Kobashi, Y., Kubota, Y., Ogura, M., & Kusaka, J. (2019). NH3-SCR by monolithic Cu-ZSM-5 and Cu-AFX catalysts: Kinetic modeling and engine bench tests. Catalysis Today, 332, 59–63. DOI: 10.1016/j.cattod.2018.06.023.

30.  Di Bartolomeo, E., & Grilli, M. L. (2005). YSZ-based electrochemical sensors: From materials preparation to testing in the exhausts of an engine bench test. Journal of the European Ceramic Society, 25(12), 2959–2964. DOI: 10.1016/j.jeurceramsoc.2005.03.218.

31.  Huang, Gh., Lou, D., Hu, Z., Tan, P., Yao, D., Hu, W., Li, P., Ren, J., & Chen, Ch. (2012). Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement. Journal of Environmental Sciences, 24(11), 1972–1978. DOI: 10.1016/S1001-0742(11)61038-3.

32.  Shen, B., Li, Z., Li, J., Kong, X., He, L., Song, J., & Liang, X. (2017). Development of a 1D Urea-SCR system model coupling with wall film decomposition mechanism based on engine bench test data. Energy Procedia, 142, 3492–3497. DOI: 10.1016/j.egypro.2017.12.235.

33.  Iodice, P., & Senatore, A. (2016). New research assessing the effect of engine operating conditions on regulated emissions of a 4-stroke motorcycle by test bench measurements. Environmental Impact Assessment Review, 61, 61–67. DOI: 10.1016/j.eiar.2016.07.004.

34.  3D Geometry modelling online free system FreeCAD: official site. URL: https://www.freecad.org.

35.  Online free system for modeling the working processes of reciprocating internal combustion engines using digital twins Blitz-PRO: official site. URL: http://blitzpro.zeddmalam.com/application/index/signin.