DEVELOPMENT OF TECHNOLOGY FOR MONITORING CHLORINE EMISSIONS INTO THE ATMOSPHERE DURING DISINFECTION OF WASTEWATER AT MUNICIPAL WASTEWATER TREATMENT PLANTS

PDF(UKRAINIAN)

 

Plotnikov Ivan 

LIMITED LIABILITY COMPANY "Telecom Complex", Kharkiv, Ukraine

 

Kondratenko Olexandr

National University of Civil Protection of Ukraine, Cherkasy, Ukraine

https://orcid.org/0000-0001-9687-0454

 

 

Koloskova Hanna

National Aerospace University “Kharkiv Aviation Institute”Kharkiv, Ukraine

https://orcid.org/0000-0001-7118-0115

 

Koloskov Volodymyr

National University of Civil Protection of Ukraine, Cherkasy, Ukraine

https://orcid.org/0000-0002-9844-1845

  

DOI: 10.52363/2522-1892.2025.1.6

 

Keywords: protection technologies, environment, wastewater disinfection, chlorine vapor, pollution spread prediction, automated monitoring system

 

Abstract

The technology of automation of monitoring of the state of technogenic and ecological safety at urban treatment plants has been developed, as an executive body of the technology of environmental protection. A new automated monitoring system for the control of chlorine emissions into the atmospheric air has been developed and the technology for assessing the state of technogenic and ecological safety of treatment plants has been improved. The basis of the process of detecting chlorine emissions is a separate automated subsystem of gas analysis, which is a superstructure over the technological automation systems.

The development of an automated monitoring system involves the use of modern electronic computing devices and specialized software to solve the functions assigned to it. The topology of the placement of measuring transducers of the gas analysis system has been developed based on technological maps of the decontamination process, taking into account the composition, location and characteristics of the main technological equipment.

The use of meteorological parameter control technology in the designed automated monitoring system allows for the early development of management decisions to prevent the spread of a cloud of chemical contamination over a significant area, and the technology for predicting the spread of contamination in real time informs the operational and duty personnel of the facility about the possible consequences of the situation.

Considering the lack of environmental monitoring of the state of atmospheric air at urban treatment facilities, the implementation of an automated monitoring system will allow for the control of one of the extremely dangerous factors of the wastewater treatment production process, which poses an environmental hazard not only to atmospheric air, but also to the environment as a whole.

The developed environmental protection technology through the use of unified devices and protocols has a high coefficient of interchangeability of components and does not impose additional requirements on equipment, which makes it more adaptive.

 

References

1.         Pro zatverdzhennia Metodyky prohnozuvannia naslidkiv vylyvu (vykydu) nebezpechnykh khimichnykh rechovyn pid chas avarii na khimichno nebezpechnykh obiektakh i transporti [On the approval of the method of forecasting the effects of pouring (ejection) of hazardous chemicals during accidents at chemically hazardous objects and transport], 1000 Decree of the Cabinet of Ministers of Ukraine (2019). URL: https://zakon.rada.gov.ua/laws/show/z0440-20#Text. [in Ukrainian]

2.         Ukrainian Association of Businesses of Water Field “Ukrvodokanalekolohiia”. (2025). URL: https://ukrvodokanal.in.ua. [in Ukrainian]

3.         State Institution «Mykolaiv Regional Center for Control and Prevention of Diseases of the Ministry of Health of Ukraine». (2025). URL: https://mocdc.mk.ua. [in Ukrainian]

4.         Nishat, A., Yusuf, M., Qadir, A., Ezaier, Y., Vambol, V., Khan, I. M., Ben Moussa, S., Kamyab, H., Sehgal, S. S., Prakash, C., Yang, H.-H., Ibrahim, H., & Eldin, S. M. (2023). Wastewater treatment: A short assessment on available techniques. Alexandria Engineering Journal, 76, 505–516.

5.         Sangamnere, R., Misra, T., Bherwani, H., Kapley, A., & Kumar, R. (2023). A critical review of conventional and emerging wastewater treatment technologies. Sustainable Water Resources Management, 9, 58.

6.         Rashid, R., Shafiq, I., Akhter, P., Iqbal, M. J., & Hussain, M. (2021). A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environmental Science and Pollution Research, 28, 9050–9066.

7.         Kovalchuk, V. A. (2002). Ochystka stichnykh vod [Wastewater treatment]. Rivne, VAT «Rivnenska drukarnia». [in Ukrainian]

8.         Pro rehuliuvannia mistobudivnoi diialnosti [On regulation of urban planning activity], 3038-VI Law of Ukraine (2011). URL: https://zakon.rada.gov.ua/laws/show/3038-17#Text. [in Ukrainian]

9.         Deiaki pytannia stvorennia, administruvannia ta zabezpechennia funktsionuvannia zasobu informatyzatsii [Some issues of creation, administration and ensuring the functioning of a tool of informatization], 205 Decree of the Cabinet of Ministers of Ukraine (2025). URL: https://zakon.rada.gov.ua/laws/show/205-2025-%D0%BF#Text. [in Ukrainian]

10.      Barannik, V. O. (2011). Ekolohichnyi monitorynh: Konspekt lektsii [Environmental Monitoring: Lecture Notes]. Kharkiv, KNAME. [in Ukrainian]

11.      Barannik, V. O. (2012). Metodychni vkazivky do praktychnykh zaniat i samostiinoi roboty z dystsypliny “Ekolohichnyi monitorynh” [Methodical instructions for practical classes and independent work in the discipline "Ecological Monitoring"]. Kharkiv, KNAME. [in Ukrainian]

12.      Yaremchuk, Yu. Ye., Pavlovskyi, P. V., Kataiev, V. S., & Siniuhin, V. V. (2018). Kompleksni systemy zakhystu informatsii: navchalnyi posibnyk [Complex information security systems: a textbook]. Vinnytsia, VNTU. [in Ukrainian]

13.      Pro zatverdzhennia Poriadku ochyshchennia stichnykh vod pered skydanniam v urazlyvykh zonakh [On approval of the order of wastewater treatment before dumping in vulnerable zones], 378 Decree of the Cabinet of Ministers of Ukraine (2024). URL: https://zakon.rada.gov.ua/laws/show/378-2024-%D0%BF#Text. [in Ukrainian]

14.      Ministry of Environmental and Natural Resources of Ukraine. (2025). EcoThreat. URL: https://ecozagroza.gov.ua/. [in Ukrainian]

15.      Ukrainian Hydrometeorological Center of the SES of Ukraine. (2025). URL: https://www.meteo.gov.ua. [in Ukrainian]

16.      SaveEcoBot. (2025). Online Ecological Monitoring Service. URL: https://www.saveecobot.com. [in Ukrainian]

17.      Plotnykov, I. V., & Rashkevych, N. V. (2024). Oblast roboty avtomatyzovanykh system rannoho vyiavlennia nadzvychainykh sytuatsii na hidroakumulovanykh elektrostantsiiakh [The area of operation of automated systems of early detection of emergencies at hydroaccumulated power plants]. Materialy Mizhnarodnoi naukovo-praktychnoi konferentsiiProblems of Emergency Situations. Kharkiv: NUCDU, 85–86. [in Ukrainian]

18.      Rashkevych, N. V., Plotnykov, I. V., Otrosh, Yu. A., & Chuchmai, O. M. (2024). Analiz stanu zabezpechennia bezpeky hidrotekhnichnykh sporud [Analysis of the state of safety of hydraulic structures]. Tavriiskyi naukovyi visnyk. Seriia: Tekhnichni nauky, 4, 317–321. [in Ukrainian]

19.      Telecom Complex LLC. (2018). Pult upravlinnia avtomatyzovanym kompleksom rannoho vyiavlennia zahrozy vynyknennia nadzvychainykh sytuatsii ta opovishchennia PU AKVO [The control panel automated complex of early detection of the threat PU AKVO]. URL: https://surl.li/evuzly. [in Ukrainian]

20.      Kharkiv City Council. (2025). URL: https://www.city.kharkiv.ua. [in Ukrainian]