ARBITRARY PROCESSES RESEARCH SYSTEMOLOGY OF SOIL ECOLOGICAL QUALITY RECOVERY AND ANTHROPOGENIC TERRITORIES “SOIL-PLANTS” SYSTEMS

PDF(UKRAINIAN)

 

Kozulia Tatiana

National Technical University “Kharkiv Polytechnic Institute”, KharkivUkraine

https://orcid.org/0000-0001-5107-9140

 

DOI: 10.52363/2522-1892.2025.2.1

 

Key words: anthropogenic ecological safety, research systemology, anthropogenic factors, ecological conformance control, soil, system modelling, “state – process” entropic function, GIS analysis

 

Abstract

The paper examines complex analysis problems of athropogenically loaded territories ecological state from ecological sytems quality recovery identification point of view. The research was carried out according to proposed natural-anthropogenic complexes objects systemological analysis. The analytical system of research object ecological compliance was planted with complex approach ideology which presents information in the convenient form for analysis and processing. The analytical system itself consists of several systems: “state – process” and “soil – plants”. Every such system detects ecological quality violation separately for research objects according to “object-environment” equilibrium estimation results (research systemology).

The paper proposes to take into account ecological equilibrium violation factors according to ecological compliance esteem results through next procedure: experimental analytical research, statistical analysis, GIS data processing, pollutants entropic functions usage and their participation in transformational changes.

 

The main practical research results are connected with “state-process” study within “soil” systems of anthropogenically disturbed territories. According to systemological ideology the soil is considered as thermodynamic system with certain environment. The external neighbouring system effects are taken into account along side with  internal soil components interactions in such case. System connections and analytical experiments results comparison allowed to determine probable pollutants process transformations within soils. Positive transformational changes are noted in soil systems due to them losing mobility. It is used as basis for claiming possible natural functions self-restoration of anthropogenically loaded territories. Years long research of anthropogenically loaded soils as complex natural systems were used as basis for evidential assessment of pollutants transformational mechanisms in migration flow that advance eliminating equilibrium state violation in soil ecosystem.

 

References

1.     Pro zatverdzhennia Poriadku provedennia monitorynhu zemel i gruntiv [On the approval of the Procedure for monitoring lands and soils]. 848 Order of the Cabinet of Ministers of Ukraine. (2024). URL: https://zakon.rada.gov.ua/laws/show/848-2024-%D0%BF#Text. [in Ukrainian]

2.     Kozulia, T. V., & Kozulia, M. M. (2024). Informatsiino-metodychni osnovy pidtrymky pryiniattia rishen dlia kompleksnoho doslidzhennia systemnykh obiektiv : monohrafiia [Information and methodological foundations for decision support for comprehensive research of systemic objects: monograph]. Nats. tekhn. un-t "Kharkiv. politekhn. in-t".  Kharkiv: NTU «KhPI». URL: https://repository.kpi.kharkov.ua/handle/KhPI-Press/79823; https://repository.kpi.kharkov.ua/items/51bd528f-330f-4a59-b030-b7e6db891b6a. [in Ukrainian]

3.     Ministry of Environmental Protection and Natural Resources of Ukraine. Ekolohichnyi monitorynh [Ecological monitoring]. URL: https://mepr.gov.ua/topics/novyny-/ekologichnyj-monitoryng-novyny/. [in Ukrainian]

4.     Kamaraj, M., Kiruthika, N., Saranya, T., & Aravind, J. (2025). Bibliometric analysis and impact of heavy metals contamination in soils. Global Journal of Environmental Science and Management, 11(1), 321–342. DOI: 10.22034/gjesm.2025.01.19.

5.     Sharafi, S., & Salehi, F. (2025). Comprehensive assessment of heavy metal (HMs) contamination and associated health risks in agricultural soils and groundwater proximal to industrial sites. Scientific Reports, 15(1), 7518. DOI: 10.1038/s41598-025-91453-7.

6.     Li, Y., Wang, Z., Liu, L., Geng, Y., & Zhang, J. (2025). A combined model method was used to identify the main influencing factors of soil heavy metal pollution sources in Qian river, China. Scientific Reports, 15(1), 14040. DOI: 10.1038/s41598-025-98881-5.

7.     Bakhshaee, A., Babakhani, P, Ashiq, M. M., Bell, K, Salehi, M & Jazaei, F. (2025). Potential impacts of microplastic pollution on soil–water–plant dynamics. Scientific Reports, 15, 9784. DOI: 10.1038/s41598-025-93668-0.

8.  Rodríguez-Castrejón, U. E., Serafín-Muñoz, A. H., Álvarez-Vargas, A., Cruz-Jiménez, G., Gutiérrez-Ortega, N. L., Miranda-Avilés, R., & Cano-Canchola, Ma. C. (2025). Assessment of arsenite removal efficiency, resistance, and biotransformation by Microbacterium hydroxycarbonoxydans isolated from contaminated sites. Scientific Reports, 15(1), 18494. DOI: 10.1038/s41598-025-98622-8.

9.     Singh, P.,  Haritwal, D. K., Ramana, G. V., & Datta, M. (2025). Quantifying Contamination Risks: Groundwater Vulnerability Assessment at an MSW Dumpsite with Advanced Profiling Tools. Environmental Pollution, 380, 126522. DOI: 10.1016/j.envpol.2025.126522.

10.  Novakovska, I., Belousova, N., & Hunko, L. (2025). Land degradation in Ukraine as a result of military operations. Acta Scientiarum Polonorum, Administratio Locorum, 24(1), 129–145. DOI: 10.31648/aspal.9788/.

11.  Didovets, Yu., Koloskov, V., Bandurian, B., & Koloskova, H. (2024). Method of Investigation of Soil Contamination with Heavy Metals at the Sites of Explosions. Key Engineering Materials, 988, 107–116. DOI: 10.4028/p-n9oeAe.

12.  State Institution “Institute of Soil Protection of Ukraine”. Ahrokhimichne obstezhennia silskohospodarskykh uhid [Agrochemical survey of agricultural land]. URL: https://iogu.gov.ua/land_survey. [in Ukrainian]

13.  Kozulia, T. V. (2014). Theoretical and practical base of methodology for ecological complex estimation of territorial and object systems. Monograph. Saarbrücken, Palmarium Academic Publishing. URL: https://www.morebooks.de/shop-ui/shop/product/9783639768343.

14.  Kozulia, T., Kozulia, M., & Didmanidze, I. (2020). Сomprehensive study of the systemic formation «object–environment» safety state. Technogenic and Ecological Safety, 7(1/2020), 3–12. URL: http://repositsc.nuczu.edu.ua/handle/123456789/10749.

15.  Kozulia, T. V., & Kozulia, M. M. (2022). Using the systemological basis and information entropy function in the study at uncertainty conditions of system-structured objects. Voprosy Atomnoj Nauki i Tekhniki, 3(139), 118–127. DOI: 10.46813/2022-139-118.

16.  Kozulia, T. (2023). The concept of information-entropy space for system objects models building used in sustainable development tasks. Radio Electronics Computer Science Control, 2(65), 20–31. DOI: 10.15588/1607-3274-2023-2-3.

17.  Kuraieva, I.V., Splodytel A. O. (2020). Rozpodil vazhkykh metaliv u systemi “grunt-roslyna” v landshaftakh pryrodookhoronnykh terytorii [Distribution of heavy metals in the “soil-plant” system in the landscapes of nature protection areas]. Heokhimiia tekhnohenezu. Zbirnyk naukovykh prats instytutu heokhimii navkolyshnoho seredovyshcha, 3(31), 79–89. DOI: 10.15407/geotech2020.31.079. [in Ukrainian]

18.  Free Satellite Imagery Sources: Zoom In Our Planet. URL: https://eos.com/blog/free-satellite-imagery-sources/.

19.  How to use GIS for Soil Mapping and Crop Monitoring (April 8, 2025). URL: https://www.mapog.com/soil-mapping-crop-monitoring-gis-tools/

20.  EOSDA PRODUCTS. Satellite Data Analytics For Daily Earth Insights & Decision-making. URL: https://eos.com.

21.  Vydy vodnykh indeksiv ta yikh zastosuvannia [Types of water indices and their application]. URL: https://innoter.com/articles/vidy-vodnykh-indeksov-i-ikh-primenenie/. [in Ukrainian]