MODELING OF DISPERSION AND ASSESSMENT OF ECOLOGICAL CONSEQUENCES OF CHEMICAL POLLUTION DEPOSITION DURING TECHNOGENIC ACCIDENTS
Kochanov Eduard
V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
https://orcid.org/0000-0002-8443-4054
Nekos Alla
V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
https://orcid.org/0000-0003-1852-0234
Bezsonnyi Vitalii
Simon Kuznets Kharkiv National University of Economics, Kharkiv, Ukraine
https://orcid.org/0000-0001-8089-7724
DOI: 10.52363/2522-1892.2025.2.4
Key words: technogenic accident, chemical pollution, ecological consequences, dry deposition, surface roughness, ammonia, eutrophication, mathematical modeling
Abstract
The purpose of the study is to develop a comprehensive mathematical model to forecast and assess not only human impact zones but also the long-term ecological consequences of accidental HDS (Highly Dangerous Substances) releases. The model bridges the gap between classic civil defense tasks and the needs of environmental safety assessment, shifting the focus from calculating toxodose (PCt50) to quantifying the mass loading of pollutants onto ecosystems (in kg/ha).
The methodology is based on combining two blocks. The first is an improved Gaussian atmospheric dispersion model which, unlike standard approaches, accounts for the surface roughness parameter (z0), significantly impacting near-ground concentrations. The second, and key, block is a newly introduced methodology for calculating dry deposition, which uses the deposition velocity parameter (Vd). This allows for a transition from calculating air concentrations (C) to deposition flux (F) and cumulative deposition (D) onto soil and water. Modeling was performed for scenarios involving a 100-tonne ammonia release under various stability classes (A,D,F) and surface types.
The results demonstrate the critical importance of both parameters. First, sensitivity analysis proved that ignoring z0 leads to significant errors in forecasting the cloud dispersion depth (up to an 88% difference under neutral conditions). Second, and most importantly, a quantitative assessment of the ecological impact was conducted. It was demonstrated that the cumulative deposition of ammonia (D) can reach 100…150 kg/ha, which is equivalent to 2…3 years of agricultural nitrogen application norms. This "shock loading" causes acute soil acidification. In water bodies, the calculated concentration (Cwater) reaches 2.5…4.0 mg/L, which critically exceeds the MAC (Maximum Allowable Concentration) for fishery water bodies (<0.5 mg/L) and leads to mass mortality of biota.
Limitations and assumptions of the study include the use of parameterized Vd values and the application of a Gaussian model, which is an analytical approximation compared to CFD approaches.
The practical value of the work lies in creating a scientific and methodological tool that allows forecasting not evacuation zones, but zones that will require long-term ecological remediation (e.g., soil liming) and enhanced monitoring.
The scientific novelty and significance lie in the development of an integrated “atmospheric transport (z0) – deposition (Vd) – ecological consequence (kg/ha, mg/L)” model, which provides a quantitative, rather than merely qualitative, assessment of environmental damage from chemical accidents.
References
1. Weger, M., Knoth, O., & Heinold, B. (2021). An urban large–eddy–simulation–based dispersion model for marginal grid resolutions: CAIRDIO v1.0. Geoscientific Model Development, 14(3), 1469–1493. DOI: 10.5194/gmd–14–1469–2021.
2. Di Nicola, F., Brattich, E., & Di Sabatino, S. (2022). A new approach for roughness representation within urban dispersion models. Atmospheric Environment, 283, 119181. DOI: 10.1016/j.atmosenv.2022.119181.
3. Lipták, Ľ., Cibulka, J., Kucbel, M., & Jurčák, P. (2023). Dispersion and radiation modelling in ESTE system using urban LPM. Atmosphere, 14(7), 1077. DOI: 10.3390/atmos14071077.
4. Lacome, J.-M., Leroy, G., Joubert, L., & Truchot, B. (2023). Harmonisation in Atmospheric Dispersion Modelling Approaches to Assess Toxic Consequences in the Neighbourhood of Industrial Facilities. Atmosphere, 14(11), 1605. DOI: 10.3390/atmos14111605.
5. Gant, S., Weil, J., Delle Monache, L., Hanna, S., & Chang, J. (2018). Dense gas dispersion model development and testing for the Jack Rabbit II phase 1 chlorine release experiments. Atmospheric Environment, 192, 218–240. DOI: 10.1016/j.atmosenv.2018.08.009.
6. Hou, J., Gai, W.-M., Cheng, W.-Y., & Deng, Y.-F. (2021). Hazardous chemical leakage accidents and emergency evacuation response from 2009 to 2018 in China: A review. Safety Science, 135, 105101. DOI: 10.1016/j.ssci.2020.105101.
7. Yoo, B., & Choi, S. D. (2019). Emergency evacuation plan for hazardous chemicals leakage accidents using GIS–based risk analysis techniques in South Korea. International Journal of Environmental Research and Public Health, 16(11), 1948. DOI: 10.3390/ijerph16111948.
8. Spicer, T. O., & Havens, J. A. (1987). Field test validation of the degadis model. Journal of Hazardous Materials, 16, 231–245. DOI: 10.1016/0304–3894(87)80036–5.
9. Fthenakis, V. (1999). HGSYSTEM: a review, critique, and comparison with other models. Journal of Loss Prevention in the Process Industries, 12(6), 525–531. DOI: 10.1016/S0950–4230(99)00029–7.
10. Hanna, S., Chang, J. (2012). Acceptance criteria for urban dispersion model evaluation. Meteorology and Atmospheric Physics, 116, 133–146. DOI: 10.1007/s00703–011–0177–1.
11. Bellegoni, M., Ovidi, F., Landucci, G., Tognotti, L., & Galletti, C. (2021). CFD analysis of the influence of a perimeter wall on the natural gas dispersion from an LNG pool. Process Safety and Environmental Protection, 148, 751–764. DOI: 10.1016/j.psep.2021.01.048.
12. Spicer, T. & Tickle, G. (2021). Simplified source description for atmospheric dispersion model comparison of the Jack Rabbit II chlorine field experiments. Atmospheric Environment, 244, 117866. DOI: 10.1016/j.atmosenv.2020.117866.
13. Fox, S., Hanna, S., Mazzola, T., Spicer, T., Chang, J., & Gant, S. (2022). Overview of the Jack Rabbit II (JR II) field experiments and summary of the methods used in the dispersion model comparisons. Atmospheric Environment, 269, 118783. DOI: 10.1016/j.atmosenv.2021.118783.
14. Amelina, L. V., Biliaiev, M. M., Berlov, O. V., Verhun, O. O., & Rusakova, T. I. (2021). Modeling of Environmental Pollution by Ammonia Emission from a Damaged Pipeline. Science and Transport Progress, 1(91), 5–14. DOI: 10.15802/stp2021/229167.
15. Rusin, A., & Stolecka-Antczak, K. (2023). Assessment of the Safety of Transport of the Natural Gas–Ammonia Mixture. Energies, 16(5), 2472. DOI: 10.3390/en16052472.
16. Wu, Q., Wang, Y., Sun, H., Lin, H., & Zhao, Z. (2023). A System Coupled GIS and CFD for Atmospheric Pollution Dispersion Simulation in Urban Blocks. Atmosphere, 14(5), 832. DOI: 10.3390/atmos14050832.
17. Jiao, Z., Zhang, Z., Jung, S., & Wang, Q. (2023). Machine learning based quantitative consequence prediction models for toxic dispersion casualty. Journal of Loss Prevention in the Process Industries, 81, 104952. DOI: 10.1016/j.jlp.2022.104952.
18. Qian, F., Chen, L., Li, J., Ding, C., Chen, X., & Wang, J. (2019). Direct Prediction of the Toxic Gas Diffusion Rule in a Real Environment Based on LSTM. International Journal of Environmental Research and Public Health, 16(12), 2133. DOI: 10.3390/ijerph16122133.
19. Viúdez–Moreiras, D. (2023). Editorial for the Special Issue “Atmospheric Dispersion and Chemistry Models: Advances and Applications”. Atmosphere, 14(8), 1275. 10.3390/atmos14081275.
20. Wesley, M. L., & Hicks, B. B. (1977). Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation. Journal of the Air Pollution Control Association, 27(11), 1110-1116. DOI: 10.1080/00022470.1977.10470534.
21. Sutton, M. A., Nemitz, E., Erisman, J. W., Beier, C., Butterbach-Bahl, K., Cellier, P., de Vries, W., Cotrufo, F., Skiba, U., Di Marco, C., Jones, S., Laville, P., Soussana, J. F., Loubet, B., Twigg, M., Famulari, D., Whitehead, J., Gallagher, M. W., Neftel, A., Flechard, C. R., Herrmann, B., Calanca, P. L., Schjoerring, J. K., Daemmgen, U., Horvath, L., Tang, Y. S., Emmett, B. A., Tietema, A., Peñuelas, J., Kesik, M., Brueggemann, N., Pilegaard, K., Vesala, T., Campbell, C. L., Olesen, J. E., Dragosits, U., Theobald, M. R., Levy, P., Mobbs, D. C., Milne, R., Viovy, N., Vuichard, N., Smith, J. U., Smith, P., Bergamaschi, P., Fowler, D., & Reis, S. (2007). Challenges in quantifying biosphere-atmosphere exchange of reactive nitrogen. Environmental Pollution, 150(1), 125–139. DOI: 1 10.1016/j.envpol.2007.04.014.
22. Erisman, J. W., Sutton, M. A., Galloway, J. N., Klimont, Z., & Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10), 636-639. DOI: 10.1038/ngeo325.
23. Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100(1–3), 179–196. DOI: 10.1016/S0269-7491(99)00091-3.
