ENERGY AUDIT OF A RESIDENTIAL BUILDING AS AN ENVIRONMENTAL PROTECTION TECHNOLOGY USING THE EXAMPLE OF A HOTEL – ECOLOGICAL, ENERGY AND ECONOMIC EFFECTS: A CASE STUDY
Kondratenko Olexandr
National University of Civil Protection of Ukraine, Cherkasy, Ukraine
https://orcid.org/0000-0001-9687-0454
Koloskov Volodymyr
National University of Civil Protection of Ukraine, Cherkasy, Ukraine
https://orcid.org/0000-0002-9844-1845
Koloskova Hanna
National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
https://orcid.org/0000-0001-7118-0115
Lytvynenko Olha
National University of Civil Protection of Ukraine, Cherkasy, Ukraine
https://orcid.org/0000-0003-3322-8805
DOI: 10.52363/2522-1892.2025.2.7
Keywords: environmental protection technologies, ecological safety, technogenic and ecological safety, buildings and structures, energy efficiency, energy audit, ecological effect, economic effect, energy effect, armed aggression, post-war reconstruction
Abstract
In the article, which shows the results of the authors' own research, the purpose of which was determination of energy, ecological and economic effects of implementing the proposed measures based on the results of an energy audit of a residential building using the example of a hotel in conditions of armed aggression and in the perspective of the post-war reconstruction of critical infrastructure and the economy of our country, the following tasks have been consistently solved: performing the analysis of the research output data; performing the building description; performing the calculations of the building's energy efficiency indicators before implementing the suggested technical solutions; proposing the technical solutions to increase the energy efficiency of the building; performing the calculations of the building's energy efficiency indicators after implementing the suggested technical solutions; drawing conclusions based on a comparative analysis of the building's energy efficiency indicators, identified energy, ecological and economic effects of implementing the proposed measures. Problem of the study is the lack of the required number of building energy auditors in the labor market, given the prospects for the post-war reconstruction of critical infrastructure facilities, buildings and structures for industrial, office and residential purposes in terms of implementing sustainable development goals and the requirements of relevant legislation, including those regarding ecological safety. Idea of the study is to conduct an energy audit of a residential building using the example of a hotel, propose technical solutions and determine the energy, ecological and economic effects of their implementation in order to reduce energy consumption in conditions of armed aggression and in the perspective of the post-war reconstruction of the critical infrastructure and economic of our country. Object of the study is energy efficiency indicators of existing and designed buildings for various purposes. Subject of the study is methods for calculating the object of study and factors that influence their numerical values. Scientific novelty of the results obtained is the approach to determining the energy, ecological and economic effects of implementing technical measures to increase energy efficiency based on energy audit data for hotel-type buildings has been further developed. Practical value of the results obtained is the applying regulatory methods to other objects described above will allow the practical implementation of the results of such calculations in the official activities of divisions and units of the SES of Ukraine, with existing workplaces for employees, places for placing fire-fighting and emergency rescue equipment, taking into account the peculiarities of operational duty by rescuer crews.
References
1. Pro zatverdzhennia Polozhennia pro orhanizatsiiu ekolohichnoho zabezpechennia DSNS Ukrainy [On approval of the Regulations on the organization of environmental support of the State Emergency Service of Ukraine] 618 Order of the State Emergency Service of Ukraine. (2013). URL: https://zakon.rada.gov.ua/rada/show/v0618388-13#Text. [in Ukrainian]
2. Pro Tsili staloho rozvytku Ukrainy na period do 2030 roku [On Ukraine's Sustainable Development Goals for the period up to 2030] 722/2019 Order of the President of Ukraine. (2019). URL: https://zakon.rada.gov.ua/laws/show/722/2019#Text. [in Ukrainian]
3. Pro zatverdzhennia pereliku priorytetnykh tematychnykh napriamiv naukovykh doslidzhen i naukovo-tekhnichnykh rozrobok na period do 31 hrudnia roku, nastupnoho pislia prypynennia abo skasuvannia voiennoho stanu v Ukraini [On approval of the list of priority thematic areas of scientific research and scientific and technical developments for the period until December 31 of the year following the termination or abolition of martial law in Ukraine] 476 Order of the Cabinet of Ministers of Ukraine. (2024). URL: https://zakon.rada.gov.ua/laws/show/476-2024-%D0%BF#Text. [in Ukrainian]
4. Specialty passport 21.06.01 “Environmental safety”. (2001). URL: https://zakon.rada.gov.ua/rada/show/va7_7330-01#Text. [in Ukrainian]
5. Pro vnesennia zmin do deiakykh zakoniv Ukrainy shchodo oboviazkovosti vykorystannia ridkoho biopalyva (biokomponentiv) u haluzi transportu [On amendments to certain laws of Ukraine regardin]g the mandatory use of liquid biofuels (biocomponents) in the transport sector] 3769-IX Law of Ukraine. (2024). URL: https://zakon.rada.gov.ua/laws/show/3769-20#Text. [in Ukrainian]
6. Pro energetychnu efektyvnist [On energy efficiency] 1818-IX Law of Ukraine. (2021). URL: https://zakon.rada.gov.ua/laws/show/1818-20#Text. [in Ukrainian]
7. Pro energetychnu efektyvnist budivel [On energy efficiency of buildings] 2118-VIII Law of Ukraine. (2017). URL: https://zakon.rada.gov.ua/laws/show/2118-19#Text. [in Ukrainian]
8. DSTU 9190:2022. (2022). Enerhetychna efektyvnist budivel. Metod rozrakhunku enerhospozhyvannia pid chas opalennia, okholodzhennia, ventyliatsii, osvitlennia ta hariachoho vodopostachannia [Energy efficiency of buildings. Method for calculating energy consumption during heating, cooling, ventilation, lighting and hot water supply]. URL: https://zakon.rada.gov.ua/rada/show/v0201774-22#Text. [in Ukrainian]
9. DSTU 3008:2015. (2015). Informatsiia ta dokumentatsiia. Zvity u sferi nauky i tekhniky. Struktura ta pravyla oformliuvannia [Information and documentation. Reports in the field of science and technology. Structure and rules of design]. URL: https://science.kname.edu.ua/images/dok/derzhstandart_3008_2015.pdf. [in Ukrainian]
10. DSTU GOST 2.001:2006. (2006). Iedyna systema konstruktorskoi dokumentatsii. Zahalni polozhennia [Unified system of design documentation. General provisions]. URL: https://zakon.rada.gov.ua/rada/show/v0373609-06#Text. [in Ukrainian]
11. DSTU 8302:2015. (2015). Bibliohrafichne posylannia. Zahalni polozhennia ta pravyla skladannia [Bibliographic reference. General provisions and rules of compilation]. URL: https://kubg.edu.ua/images/stories/podii/2017/06_21_posylannia/dstu_8302.pdf. [in Ukrainian]
12. DSTU-N B V.1.1-27:2010. (2010). Budivelna klimatolohiia [Construction Climatology]. URL: https://finance.smr.gov.ua/files/%D0%95%D0%BD%D0%B5%D1%80%D0%B3%D0%BE%D0%B7%D0%B1%D0%B5%D1%80%D0%B5%D0%B6%D0%B5%D0%BD%D0%BD%D1%8F/dstu-n-b-v11-27-2010-budivelna-klimatologiya.pdf. [in Ukrainian]
13. DBN V.2.6-31:2021. (2021). Teplova izoliatsiia ta enerhoefektyvnist budivel [Thermal insulation and energy efficiency of buildings]. URL: https://e-construction.gov.ua/laws_detail/3075196638495507996. [in Ukrainian]
14. SLI-DOOR LLC. Official web-site. https://www.sli-door.com/wp-content/uploads/2019/09/Koefitsiyent_teploperedachi_Uq-1.png.
15. REHAU LLC. Official web-site. URL: https://window.rehau.com/ua-uk/pryvatnym-kliyentam/ohlyad-vikonnykh-system/brillant-euro-design-70.
16. Deshko, V. I., Bilous, I. Iu., & Kramarenko, S. O. (2020). Dodatkovi teplovtraty v mistsiakh prymykannia vikonnoi ramy do ohorodzhuvalnykh[Additional heat loss at the junction of the window frame with the enclosing structures]. Energy: economics, technologies, ecology. № 2. P. 36–43. [in Ukrainian]
17. Alta Profil LLC. Official web-site. URL: https://alta-profil.ua/ua/poleznoe/interesnoe-o-produkcii/teploprovodnost/ ?srsltid=AfmBOorhBuKzlKPAcoxCg3iF2bw_rAklckiswzuLppnTrj6zzrkc5Knp.
18. DSTU B EN ISO 10077-1:2016. (2016). Teplotekhnichni vlastyvosti vikon, dverei i zhaliuzi. Rozrakhunok koefitsiienta teploperedachi. Chastyna 1. Zahalni umovy [Thermal properties of windows, doors and blinds. Calculation of heat transfer coefficient. Part 1. General conditions]. URL: https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=65823. [in Ukrainian]
19. Saranchuk, V. I., Iliashov, M. O., Oshovskyi, V. V., & Biletskyi, V. S. (2008). Khimiia i fizyka horiuchykh kopalyn [Chemistry and physics of fossil fuels]. Donetsk: Skhidnyi vydavnychyi dim. [in Ukrainian]
20. Bilovol, А., Komar, S., Vasilenko, O., Panchuk, O., & Rukavishnikov, P. (2020) Ensuring maximum energy efficiency of working places on the basis of system energy audit. Bulletin of the National Technical University «KhPI». Series: Techniques in a machine industry, 2(2020), 79–84.
21. Bilovol, А. V., Kagramanian, A. O., Vasylenko, O. V., & Onyshchenko, A. V. (2024). Development of a model of the full range of ways to increase the energy efficiency of production systems as a tool for achieving sustainable development goals by business. Collection of scientific papers of UkrDUZT, 210, 33–42.
22. Bosu, I., Mahmoud, H., & Hamdy, H. (2023). Energy audit, techno-economic, and environmental assessment of integrating solar technologies for energy management in a university residential building: A case study. Applied Energy, 341, 121141. DOI: 10.1016/j.apenergy.2023.121141.
23. Bosu, I., Mahmoud, H., & Hamdy, H. (2023). Energy audit and management of an industrial site based on energy efficiency, economic, and environmental analysis. Applied Energy, 333, 120619. DOI: 10.1016/j.apenergy.2022.120619.
24. Aquino, A., Bassetti, M., Martini, F., Martini, Ch., & Salvio, M. (2025). Energy efficiency of the Italian office buildings: Highlights from mandatory energy audits. Energy and Buildings, 347(A), 116275. DOI: 10.1016/j.enbuild.2025.116275.
25. Taheri, S., Norouzijajarm, E., & Athar, A. A. (2025). Technical, economic, and environmental assessment of energy audit and optimization in the mechanical room of an office building. Energy for Sustainable Development, 87, 101717. DOI: 10.1016/j.esd.2025.101717.
26. Wang, L. (2025). Digital transformation, audit risk, and the low-carbon transition of China's energy enterprises. Finance Research Letters, 71, 106445. DOI: 10.1016/j.frl.2024.106445.
27. Abd, C. N., El Fadar, A., & Achkari, O. B. (2025). Energy efficiency improvement of a wood-manufacturing plant in Morocco through energy audit. Energy for Sustainable Development, 85, 101669. DOI: 10.1016/j.esd.2025.101669.
28. Johnsson, S., Andrei, M., & Johansson, M. (2025). Harmonizing energy audit reporting: Addressing data loss and policy challenges in the EU member states. Energy, 319, 135040. DOI: 10.1016/j.energy.2025.135040.
29. Spudys, P., Jurelionis, A., & Fokaides, P. (2025). Digitizing buildings sustainability assessment: Integrating energy audits, operational energy assessments, and life cycle assessments for enhanced building assessment. Energy, 316, 134429. DOI: 10.1016/j.energy.2025.134429.
30. Nakayama, Sh., Yan, W., & Fujita, A. (2024). Developing an energy audit methodology for assessing decarbonization potential in high performance buildings. Energy Conversion and Management: X, 24, 100765. DOI: 10.1016/j.ecmx.2024.100765.
31. Saraswat, Sh., Verma, R., Jain, S., & Rakshit, D. (2025). Energy audit based holistic evaluation of building performance: A comprehensive analysis of chiller plant room. Thermal Science and Engineering Progress, 66, 104030.DOI: 10.1016/j.tsep.2025.104030.
32. Liu, J., Nie, S., & Lin, T. (2024). Government auditing and urban energy efficiency in the context of the digital economy: Evidence from China's Auditing System reform. Energy, 296, 131100. DOI: 10.1016/j.energy.2024.131100.
33. Nandipamu, T. M. K., Chaturvedi, S., Nayak, P., Dhyani, V. C., Pachauri, S. P., Shankhdhar, S. C., & Chandra, S. (2025). Energy-use audit and data envelopment analysis based optimization of tillage and residue management in rice-wheat system of Indo-Gangetic plains. Renewable Energy, 238, 121924. DOI: 10.1016/j.renene.2024.121924.
34. Taherzadeh-Shalmaei, N., Rafiee, M., Kaab, A., Khanali, M., Vaziri Rad, M. A., & Kasaeian, A. (2023). Energy audit and management of environmental GHG emissions based on multi-objective genetic algorithm and data envelopment analysis: An agriculture case. Energy Reports, 10. 2023. P. 1507-1520. DOI: 10.1016/j.egyr.2023.08.020.
35. McKenna, C., Gronlund, C., Hernández, D., & Vaishnav, P. (2025). When homeowners lose momentum after an energy audit: Barriers to completing weatherization in the United States Midwest. Energy Research & Social Science, 122, 103979. DOI: 10.1016/j.erss.2025.103979.
36. Thyagarajan, M., Narayan, S., Lakshminarayan, K., & Ambirajan, A. (2025). Energy audit of condensation-type tumble washer-dryers in an Indian household: Performance analysis of drying cycle. Applied Thermal Engineering, 278(D), 127350. DOI: 10.1016/j.applthermaleng.2025.127350.
37. Thakare, H. R., & Daspute, P. (2024). Enhancing energy conservation in power generation in a coal fired thermal power plant through comprehensive energy audit. Energy, 301, 131661. DOI: 10.1016/j.energy.2024.131661.
38. Excell, L. E., Andrews, A., & Jain, R. K. (2024). E-Audit: A “no-touch” energy audit that integrates machine learning and simulation. Energy and Buildings, 317, 114360. DOI: 10.1016/j.enbuild.2024.114360.
39. Adino, E., Abewaa, M., & Tiruneh, A. (2024). Energy audit and associated carbon footprint estimation for a Meta Abo brewery. Heliyon, 10(6), e28300. DOI: 10.1016/j.heliyon.2024.e28300.
