Ensuring of environmental safety of nanomaterials by controlling the quality of nanostructures

I. Bogdanov, Y. Suchikova, S. Vambol, V. Vambol

ABSTRACT

The relevance of the study is explained by the fact, that more than 50 countries conduct research and development in the field of nanotechnology and at least 30 countries have their own national programs in this field. In this paper, the main stages of the life cycle of nanotechnology products and their impact on the environment. The elements of a quality management system for nanostructures that are responsible for the environmental safety of nanoproducts used in microelectronics and photoelectric energy converters. Ensuring the quality of nanostructures leads to the extension of the life of the products on their basis, that is, the life cycle of products. In addition, the probability of nanoparticle release into the environment is reduced through the stabilization of the surface properties of the samples. Structural components of the detailed scheme of the control system for the technological process of electrochemical dissolution of a crystal. The tasks of controlling the process of electrochemical dissolution of a crystal are the establishment of such technological regimes in which it becomes possible to obtain nanostructures with predictable and programmable properties taking into account external factors.

Keywords: environmental safety, nanomaterials, quality management, life cycle.

 REFERENCES

1. Golinko, V. I., Luts, I. O., YavorskayaYe. A. (2012). Reserch of air and dust balance in inclined shaft of the mine No. 9–10 at Marganetskiy Dressing Plant. Scientific Bulletin of National Mining University, 3, 98–101.

2. Voitiuk, Y. Y., Kuraieva, I. V., Kroik, A. A., PavlychenkoA. V. (2014). Ecological and geochemical assessment of the soil contamination levels in the areas of metallurgical enterprises operation. Scientific Bulletin of National Mining University, 4, 45–51.

3. Rashkevich, N. V. (2017). Issledovaniye sostava produktov goreniya sinteticheskogo volokna. East journal of security studies, 1/2017, 194–201.

4. Yamaguchi, S. (2015). Incineration of waste containing nanomaterial. Environment Policy Committee, 14.

5. Alekseyeva, O. (2011). Finansirovaniye i rynok. PersT, 18, 11/12, 4. Available: http://perst.issp.ras.ru/
Control/Inform/perst/ 2011/11_11_12/index.htm.

6. Watson-Wright, C. et al. (2017). Toxicological implications of released particulate matter during thermal decomposition of nano-enabled thermoplastics. NanoImpact, 5, 29–40.

7. Suchikova, Y. A. (2017). Sulfide passivation of indium phosphide porous surfaces. Journal of Nano- and Electronic Physics, 5, 4, 04001-1–04001-4.

8. Waste containing nanomaterials. The Organisation for Economic Cooperation and Development. Available: http://www.oecd.org/environment/waste/nanowaste.htm.

9. SuchikovaY. A. (2015). Synthesis of indium nitride epitaxial layers on a substrate of porous indium phosphide. Journal of Nano- and Electronic Physics, 7, 3, 03017-103017-3.

10. Al-Saleh, M. H., Gelves, G. A., SundararajU. (2013) Carbon nanofiber/polyethylene nanocomposite: Processing behavior, microstructure and electrical properties. Materials & Design (1980-2015), 52, 128–133.

11. Sahoo, N. G., Rana, S., ChoJ. W. et al. (2010). Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, 35, 7, 837–867. Available: https://doi.org/10.1016/j.progpolymsci.
2010.03.002.

12. DušicaB. S., Brajović, L., OrlovićA. et al. (2013). Transparent PMMA/silica nanocomposites containing silica nanoparticles coating under supercritical conditions. Progress in Organic Coatings, 76 (4), 626–631.

13. Perkgoz, N. K., Unal, E., SefuncM. A. et al. (2011). Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range. Applied Catalysis B: Environmental, 105, 1–2, 77–85. Available: https://doi.org/10.1016/j.apcatb.2011.03.037.

14. Singh, D., Sotiriou, G. A., ZhangF. et al. (2016). End-of-life thermal decomposition of nano-enabled polymers: effect of nanofiller loading and polymer matrix on by-products. Environmental Science: Nano, 3 (6), 1293–1305. doi: 10.1039/C6EN00252H.

15. Shaimova, A. M., Nasyrova, L. A., FaskhutdinovRR. (2011). Izucheniye faktorov metangeneratsii v usloviyakh poligona tverdykh bytovykh otkhodov. Bashkirskiy khimicheskiy zhurnal, 2, 172–176. Available: http://cyberleninka.ru/article/n/izuchenie-faktorov-metangeneratsii-v-usloviyah-poligona-tverdyh-bytovyh-othodov.

16. OsipovaTA., RemezNS. (2015). Prognozirovaniye vykhoda biogaza i temрeratury poligona tverdykh bytovykh otkhodov na osnove matematicheskogo modelirovaniya. Vísnik KrNU ím. Mikhayla Ostrograds'kogo, 3/2015 (92), 144–149.

17. BeaudrieC. (2011). Fond khimicheskogo naslediya. Novyye nanotekhnologii i regulirovaniye zhiznennogo tsikla: issledovaniye federal'nogo normativnogo nadzora za proizvodstvom nanomaterialov do kontsa 2010 goda. Available: http://www.chemheritage.org/Downloads/Publications/White-Papers/Studies-in-SustainabilityBeaudrie.pdf (Last accessed: 05.03.2011.)

18. Suchikova, Y. A., Kidalov, V. V., SukachG. A. (2010). Preparation of nanoporous n-InP (100) layers by electrochemical etching in HCI solution. Functional Materials, 17(1), 131–134.

19. Lazarenko, A. S. (2011). Model of Formation of Nano-Sized Whiskers Out of Channels of the Triple Junctions of Grain Boundaries of Polycrystal. Journal of Nano-and Electronic Physics, 3, 4, 59–63.

20. Seager, T. P., LinkovI. (2008). Coupling Multicriteria Decision Analysis and Life Cycle Assessment for Nanomaterials. Journal of Industrial Ecology, 12, 3, 282–285.

21. Suchikova, Y. A., Kidalov, V. V., Konovalenko, A. A., Sukach, G. A. (2010). Blue shift of photoluminescence spectrum of porous InP. ECS Transactions, 25(24), 59–64.

22. Rajendran, V. (2009). Development of Nanomaterials from Natural Resources for Various Industrial Applications. Advanced Materials Research, 67, 71–76.

23. Vambol, S., Vambol, V., Suchikova, Y., DeynekoN. (2017). Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern European Journal of Enterprise Technologies, 1, 10 (85), 27–36.

24. Jones, R. (2007). Are natural resources a curse? Nature Nanotechnology, 2, 665–667.

25. Efros, A. L., NesbittD. J. (2016). Origin and control of blinking in quantum dots. Nature Nanotechnology, 11, 661–671.

 ЛІТЕРАТУРА

1. Golinko, V. I. Reserch of air and dust balance in inclined shaft of the mine No. 9–10 at Marganetskiy Dressing Plant / V. I. Golinko, I. O. Luts, Ye. A. Yavorskaya // Scientific Bulletin of National Mining University. – 2012. – № 3. – Р. 98–101.

2. Voitiuk, Y. Y. Ecological and geochemical assessment of the soil contamination levels in the areas of metallurgical enterprises operation / Y. Y. Voitiuk, I. V. Kuraieva, A. A. Kroik, A. V. Pavlychenko // Scientific Bulletin of National Mining University. – 2014. – №. 4. – Р. 45–51.

3. Рашкевич, Н. В. Исследование состава продуктов горения синтетического волокна [Текст] / Н. В. Рашкевич // East journal of security studies. – Vol. 1/2017. – Р. 194–201.

4. Yamaguchi, S. Incineration of waste containing nanomaterial [Text] / S. Yamaguchi // Environment Policy Committee. – ENV/EPOC/WPRPW(2013)3/final – 2015. – 14 р.

5. Алексеева, О. Финансирование и рынок [Текст] / О. Алексеева // ПерсТ™. – 2011. – Т. 18. – Вып. 11/12. – 4 с. – Режим доступа: http://perst.issp.ras.ru/Control/Inform/perst/ 2011/11_11_12/index.htm.

6. Watson-Wright, C. et al. Toxicological implications of released particulate matter during thermal decomposition of nano-enabled thermoplastics [Text] / C. Watson-Wright et al. // NanoImpact. – Vol. 5(2017). – P. 29–40.

7. Suchikova, Y. A. Sulfide passivation of indium phosphide porous surfaces [Text] / Y. A. Suchikova // Journal of Nano- and Electronic Physics. – 2017. – Vol. 5. – Issue 4. – P. 04001-1–04001-4.

8. Waste containing nanomaterials / The Organisation for Economic Cooperation and Development. – Available: http://www.oecd.org/environment/waste/nanowaste.htm.

9. Suchikova, Y. A. Synthesis of indium nitride epitaxial layers on a substrate of porous indium phosphide / Y. A. Suchikova // Journal of Nano- and Electronic Physics. – 2015. – Vol. 7. – Issue 3. – P. 03017-1–03017-3.

10. Al-Saleh, M. H. Carbon nanofiber/polyethylene nanocomposite: Processing behavior, microstructure and electrical properties [Text] / M. H. Al-Saleh, G. A. Gelves, U. Sundararaj // Materials & Design (1980-2015). – December, 2013. – Vol. 52. – P. 128–133.

11. Sahoo, N. G. Polymer nanocomposites based on functionalized carbon nanotubes [Text] / N. G. Sahoo, S. Rana, J. W. Cho et al. // Progress in Polymer Science. – Vol. 35. – Issue 7. – July, 2010. – P. 837–867. – Available: https://doi.org/10.1016/j.progpolymsci.2010.03.002.

12. Dušica, B. S. Transparent PMMA/silica nanocomposites containing silica nanoparticles coating under supercritical conditions [Text] / B. S. Dušica, L. Brajović, A. Orlović et al. // Progress in Organic Coatings. – April, 2013. – Vol. 76(4). – P. 626–631.

13. Perkgoz, N. K. Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range [Text] / R. S. Toru, E. Unal, M. A. Sefunc et al. // Applied Catalysis B: Environmental. – 9 June 2011. – Vol. 105. – Issues 1–2. – P. 77–85. – Available: https://doi.org/10.1016/j.apcatb.2011.03.037.

14. Singh, D. End-of-life thermal decomposition of nano-enabled polymers: effect of nanofiller loading and polymer matrix on by-products [Text] / D. Singh, G. A. Sotiriou, F. Zhang et al. // Environmental Science: Nano. – 2016. – Vol. 3. – Issue 6. – Р. 1293–1305. – doi: 10.1039/C6EN00252H.

15. Шаимова, А. М. Изучение факторов метангенерации в условиях полигона твердых бытовых отходов [Текст] / А. М. Шаимова, Л. А. Насырова, Р. Р. Фасхутдинов // Башкирский химический журн. – 2011. – № 2. – С. 172–176. – Режим доступа: http://cyberleninka.ru/article/n/izuchenie-faktorov-metangeneratsii-v-usloviyah-poligona-tverdyh-bytovyh-othodov.

16. Осипова, Т. А. Прогнозирование выхода биогаза и температуры полигона твердых бытовых отходов на основе математического моделирования [Текст] / Т. А. Осипова, Н. С. Ремез // Вісник КрНУ ім. Михайла Остроградського. – Вип. 3/2015(92). – С. 144–149.

17. Beaudrie, C. Фонд химического наследия. Новые нанотехнологии и регулирование жизненного цикла: исследование федерального нормативного надзора за производством наноматериалов до конца 2010 года. – Режим доступа: http://www.chemheritage.org/Downloads/Publications/White-Papers/Studies-in-Sustainability Beaudrie.pdf.

18. Suchikova, Y. A. Preparation of nanoporous n-InP (100) layers by electrochemical etching in HCI solution [Text] / Y. A. Suchikova, V. V. Kidalov, G. A. Sukach // Functional Materials. – 2010. – № 17(1). – Р. 131–134.

19. Lazarenko, A. S. Model of Formation of Nano-Sized Whiskers Out of Channels of the Triple Junctions of Grain Boundaries of Polycrystal [Text] / A. S. Lazarenko // Journal of Nano-and Electronic Physics. – 2011. – Vol. 3. – Issue 4. – С. 59.

20. Seager, T. P. Coupling Multicriteria Decision Analysis and Life Cycle Assessment for Nanomaterials [Text] / T. P. Seager, I. Linkov // Journal of Industrial Ecology. – 2008. – Vol. 12. – Issue 3. – Р. 282–285.

21. Suchikova, Y. A. Blue shift of photoluminescence spectrum of porous InP [Text] / Y. A. Suchikova, V. V. Kidalov, A. A. Konovalenko, G. A. Sukach // ECS Transactions. – 2010. – Vol. 25(24). – P. 59–64.

22. Rajendran, V. Development of Nanomaterials from Natural Resources for Various Industrial Applications [Text] / V. Rajendran // Advanced Materials Research. – 2009. – Vol. 67. – Р. 71–76.

23. Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle [Text] / S. Vambol, V. Vambol, Y. Suchikova, N. Deyneko // Eastern European Journal of Enterprise Technologies. – 2017. – Vol 1. – № 10 (85). – Р. 27–36.

24. Jones, R. Are natural resources a curse? [Text] / R. Jones // Nature Nanotechnology. – 2007. – № 2. – Р. 665–667.

25. Efros, A. L. Origin and control of blinking in quantum dots [Text] / A. L. Efros, D. J. Nesbitt // Nature Nanotechnology. – 2016. – № 11. – Р. 661–671.