Ecology safety technique for growth of csi:tl crystals with internal radioisotopes for radioecological monitoring
A. Kudin, V. Muntyan, T. Oliynyk, K. Kudin
ABSTRACT
The ecological safety technique the obtaining of scintillator for radioecology monitoring has been proposed. CsI:Tl crystals have been grown by directed crystallization in quartz ampoules. Grown ingots do not interact with material of container. Crystals are not cracked during cooling and subsequent machining. The technique of crystal growth excludes the surface melting of ingot that improves the ecological safety and reduces energy costs.
and
ions do not present in grown crystals according to IR spectra of vibration absorption in which the bands of noted impurities are absent. Electron absorption in visible range dues not shows the presence of
and
-centers after irradiation. Spectrometric characteristics of manufactured scintillators are not inferior to standard. The developed technique is recommended to crystal growth of CsI:Tl with internal radioisotopes for ecological monitoring. The peculiarity of this technique is the dehydration of row material at T £ 40 °C in conditions which exclude the photolysis of salt.
Keywords: ecological safety, radioecology monitoring, crystal growth, surface melting, scintillation characteristics.
REFERENCES
1. Lecoq, P., Gektin, A., Korzhik, M. (2017). Inorganic Scintillators for Detector Systems. Springer, 408.
2. Grupen, C., Shwartz, B. A. (2008). Particle Detectors. Cambridge: Cambridge University Press, 651.
3. Lyubynskiy, V. R. et al. (2000). Scintillation Assemblies Based on NaI:Tl Crystals with Reference Sources. Proc. Int. Conf. Inorganic Scintillators and Their Applications, 735–739.
4. Catalog of the Crismatec. Scintillation Detectors. (1992). France: Saint-Gobain Ceramiques Industrielles, 111.
5. Dolgopolova, A. V., Danilov, V. S., Ekkerman, V. M. et al. A. s. 695396 SSSR MPK G 01T 1/20. Aerogamma-spektrometr. - № 2637104; zayavl. 06.07.1978.
6. Goriletskiy, V. I., Grinev, B. V., Zaslavskiy, B. G., Smirnov, N. N. (2002). Rost kristallov. Khar'kov: Akta, 535.
7. Shpilinskaya, L. N. et al. (2000). The effect of oxygen-containing anions on luminescent properties of CsI. SPQEO, 3, 178–180.
8. Zaslavsky, B. G. (2000). Distinctive features of automated pulling of large scintillation alkali iodides single crystals without oxygen-containing impurities. J. Crystal Growth, 218, 277–281.
9. Kudin, A. M. et al. (2007). CsI crystals for the mid-IR region. J. Opt. Technology, 74, 633–635.
10. Cherginets, V. L. et al. (2013). Luminescence properties of CsI crystals grown from the melt treated by metals-getters. J. Crystal Growth, 380, 143–147.
11. Sofronov, D. S. et al. (2009). Origin of the Thermal Desorption Peeks of Gases in NaI above 180°C. Inorganic Materials, 45, 1314–1318.
12. Kudin, A. M., Borodenko, Yu. A., Belogub, V. V., Didenko, A. V. (2014). Spektrometricheskiy stend dlya izmereniya stsintillyatsionnykh kharakteristik detektorov na osnove sistemy «stsintillyator – PIN fotodiod». Vísnik KHNTU, 15 (1058), 87–91.
13. Sysoeva, E., Tarasov, V., Zelenskaya, O. (2002). Comparison of the Methods for Determination of Scintillation Light Yield. NIMA, A486, 67–73.
14. Shkoropatenko, A. V. (2015). Prichiny nestabil'nosti spektrometricheskikh kharakteristik kristallov CsI:Tl s matirovannoy poverkhnost'yu. Fizicheskaya inzheneriya poverkhnosti, 13, 175–183.
15. Grinev, B. V. (2000). Photo- and radiation-chemical transformations of carbonate ions in CsI and CsI(Tl) crystals. Optics and Spectroscopy, 89, 57–62.
16. Grinyov, B. V. (1997). Radiation-induced defects formation in CsI crystals containing hydroxyl and carbonate ions. Functional Materials, 4, 540–543.
17. Trefilova, L. (2008). Photo- and radiation-stimulated processes in CsI:Tl crystals. IEEE Transaction on Nuclear Science, 55, 3, 1263–1269.
18. Trefilova, L. M. (2000). Rolʹ domishkovykh ioniv CO32– u protsesakh utvorennya tsentriv svichennya i tsentriv zabarvlennya v krystalakh CsI (PhD dissertation, Nauk.-tekhn. kontsern «Instytut monokrystaliv» NAN Ukrayiny).
ЛІТЕРАТУРА
1. Lecoq, P. Inorganic Scintillators for Detector Systems [Text] / P. Lecoq, A. Gektin, M. Korzhik // Springer. – 2017. – 408 p.
2. Grupen, C. Particle Detectors [Text] / C. Grupen, B. A. Shwartz. – Cambridge: Cambridge University Press, 2008. – 651 p.
3. Lyubynskiy, V. R. Scintillation Assemblies Based on NaI:Tl Crystals with Reference Sources [Text] / V. R. Lyubynskiy et al. // Proc. Int. Conf. Inorganic Scintillators and Their Applications. – M.: Moscow State University, 2000. – P. 735–739.
4. Catalog of the Crismatec. Scintillation Detectors. – France: Saint-Gobain Ceramiques Industrielles, 1992. – 111 p.
5. А.c. 695396 СССР МПК G 01T 1/20. Аэрогамма-спектрометр / А. В. Долгополова, В. С. Данилов, В. М. Эккерман и др. – № 2637104; заявл. 06.07.1978.
6. Горилецкий, В. И. Рост кристаллов [Текст] / В. И. Горилецкий, Б. В. Гринев, Б. Г. Заславский, Н. Н. Смирнов. – Х.: Акта, 2002. – 535 с.
7. Shpilinskaya, L. N. The effect of oxygen-containing anions on luminescent properties of CsI [Text] / L. N. Shpilinskaya et al. // SPQEO. – 2000. – Vol. 3. – P. 178–180.
8. Zaslavsky, B. G. Distinctive features of automated pulling of large scintillation alkali iodides single crystals without oxygen-containing impurities [Text] / B. G. Zaslavsky // J. Crystal Growth. – 2000. – Vol. 218. – P. 277–281.
9. Kudin, A. M. CsI crystals for the mid-IR region [Text] / A. M. Kudin et al. // J. Opt. Technology. – 2007. – Vol. 74. – P. 633–635.
10. Cherginets, V. L. Luminescence properties of CsI crystals grown from the melt treated by metals-getters [Text] / V. L. Cherginets et al. // J. Crystal Growth. – 2013. – Vol. 380. – P. 143–147.
11. Sofronov, D. S. Origin of the Thermal Desorption Peeks of Gases in NaI above 180°C [Text] / D. S. Sofronov et al // Inorganic Materials. – 2009. – Vol. 45. – P. 1314–1318.
12. Кудин, А. М. Спектрометрический стенд для измерения сцинтилляционных характеристик детекторов на основе системы «сцинтиллятор – PIN фотодиод» [Текст] / А. М. Кудин, Ю. А. Бороденко, В. В. Белогуб, А. В. Диденко // Вісник ХНТУ. – Х.: ХНТУ, 2014. – № 15 (1058). – С. 87–91.
13. Sysoeva, E. Comparison of the Methods for Determination of Scintillation Light Yield [Text] / E. Sysoeva, V. Tarasov, O. Zelenskaya // NIMA. – 2002. – Vol. A486. – P. 67–73.
14. Шкоропатенко, А. В. Причины нестабильности спектрометрических характеристик кристаллов CsI:Tl с матированной поверхностью [Текст] / А. В. Шкоропатенко // Физическая инженерия поверхности. – Х., 2015. – Т. 13. – С. 175–183.
15. Grinev, B. V. Photo- and radiation-chemical transformations of carbonate ions in CsI and CsI(Tl) crystals [Text] / B. V. Grinev // Optics and Spectroscopy. – Springer, 2000. – Vol. 89. – P. 57–62.
16. Grinyov, B. V. Radiation-induced defects formation in CsI crystals containing hydroxyl and carbonate ions [Text] / B. V. Grinyov // Functional Materials. – Kh.: STC «ISC», 1997. – Vol. 4. – P. 540–543.
17. Trefilova, L. Photo- and radiation-stimulated processes in CsI:Tl crystals [Text] / L. Trefilova // IEEE Transaction on Nuclear Science. – IEEE Nuclear and Plasma Society, 2008. – Vol. 55. – № 3. – P. 1263–1269.
18. Трефілова, Л. М. Роль домішкових іонів CO32– у процесах утворення центрів свічення і центрів забарвлення в кристалах CsI: автореф. дис. ... канд. фіз.-мат. наук: 01.04.10 / Трефілова Лариса Миколаївна; Наук.-техн. концерн «Інститут монокристалів» НАН України. – Х., 2000. – 18 с.
