Heavy metals bio-adsorption by hibiscus sabdariffa l. From contaminated water

 Parisa Ziarati, Shermineh Namvar

DOI: 10.5281/zenodo.1244568

Received: 27 April 2018

Accepted: 10 May 2018

Published online: 19 May 2018

 

ABSTRACT

The metal biosorption is the removal of metal ions by inactive, nonliving biomass due to highly attractive forces present between them. Bio-adsorption capacity of Hibiscus sabdariffa L. commonly known as Roselle or red sorrel purchased from Fenooj region in Sistan province in the south-eastern region of Iran in a batch system of waste water by considering the effects of various parameters like initial concentration, pH, contact time, temperature, agitation speed and bio-adsorbent dose were studied. According to boost the capacity of bio-adsorption black tea residue was added to the red tea residue by different concentrations and percentages. Effect of various pH; temperature; dose of red tea residue in accompany by of black tea residue after infusion of 10 minutes in contaminated waste water solution in different contact time and initial concentration , particle size and agitation speed were studied. The samples were analyzed by standardized international protocols in Nutrition and Food Sciences Research Center in Pharmaceutical Sciences Branch, Islamic Azad University. The best results obtained by 0.5 % of red tea + 3 % black tea residues after 40 minutes. Further increase in contact time more than 40 minutes did not show significant increase in bio-adsorption (p > 0.05). The results of current study revealed, that using 0.5 % red tea residue in accompany by 3 % black tea residue can remove and decrease cadmium and nickel significantly and for cobalt decreasing the rate of adsorption is not as much as 2 other metals but remove cobalt after 40 minutes in remarkable contents.  

Keywords: Bio-adsorption, red tea residue, black tea, heavy metals, contaminated water.

 

REFERENCES

1. Abbaslou, H., Martin, F., Abtahi, A., Moore, F. (2014). Trace element concentrations and background values in the arid soils of Hormozgan Province of southern Iran. Archives of Agronomy and Soil Science, 60(8), 1125–1143. Available: http://dx.doi.org/10.1080/03650340.2013.864387).

2. Ahmadi, M., Ziarati, P., Manshadi, M., Asgarpanah, J., Mousavi, Z. (2013). The Phytoremediation Technique for Cleaning Up Contaminated Soil by Geranium (Pelargonium roseum). Int J Farm & Alli Sci, 2(15), 477–481.

3. AOAC. (2000). Method 962.09. Official Methods of Analysis of AOAC International, 17th ed. 14 ed., AOAC International, Gaithersburg: Maryland USA, ISBN: 0935584676 9780935584677.

4. Babel, S., Kurniawan, T. A. (2003). Various treatment technologies to remove arsenic and mercury from contaminated groundwater: an overview. (In:) Proceedings of the First International Symposium on Southeast Asian Water Environment, Bangkok, Thailand, 2003, 24–25 October, 433–440.

5. Brady, D., Stoll, A. D., Starke, L., Duncan, J. R. (1994). Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol, 41, 149–154.

6. Brierley, C. L. (1993). Bioremediation of metal–contaminated surface and ground – water. Geomicrobiol. J., 8, 201–213.

7. Buasri, A. T., Chaiyut, N., Tapang, K., Jaroensin, S., Panphrom, S. (2012). Biosorption of Heavy Metals from Aqueous Solutions Using Water Hyacinth as a Low Cost Biosorbent. Civil and Environmental Research, 2(2), 17–25.

8. Dadgar, S., Teimoori, B., Yousefi, S., Tabatabaei, M. (2014). Determination of PCB levels in skin and muscle of northern pike (Esox lucius) in Anzali Wetland. Iran. Annals of Biological Research, 1, 112–117. Available: http://www.scholarsresearchlibrary.com.

9. Fenglian, F. U., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418.

10. Krauter, P., Martinelli, R., Williams, K., Martins, S. (1996). Removal of Cr(VI) from ground water by Saccharomyces cerevisiae. Biodegradation, 7, 277–286.

11. Kwon, J. S., Yun, S. T., Lee, J. H., Kim, S. O., Jo, H. Y.(2010). Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic (III) from aqueous solutions using scoria: kinetics and equilibrium of sorption. J. of Hazard Mater, 174, 307–313.

12. Motaghi, M., Ziarati, P. (2016). Adsorptive Removal of Cadmium and Lead from Oryza sativa Rice by Banana Peel as Biosorbent. Biomed Pharmacology J, 9(2), 543–553.

13. Nriagu, J. O. (1979). Global inventory of natural and anthropogenic emission of trace metals to the atmosphere. Nature Journal, 279, 409–411.

14. ORA Laboratory Manual FDA. (2013). Office of Regulatory Affairs. Office of Regulatory Science, 6. Document No: Iv–02, Version No: 1.5, Effective Date: 10–01–03 Revised: 02–14–13. Available: http://www.fda.gov/downloads/ScienceResearch/FieldScience/UCM092226.pdf.

15. Pouget, P. M., Vennat, B., Lejeune, B., Pourrat, A. (1990). Extraction, analysis and study of the stability of Hibiscus anthocyanins. Lebensm. – Wiss. U. Technol, 23, 103–105.

16. Pourzare, A., Ziarati, P., Mousavi, Z., Faraji, A. R. (2017). Removing Cadmium and Nickel Contents in Basil Cultivated in Pharmaceutical Effluent by chamomile (Matricaria chamomilla L.) Tea Residue. J Sci Discov, 1(1), jsd17006. DOI:10.24262/jsd.1.1.17006.

17. Prenesti, E., Berto, S., Daniele, P., Toso, S. (2007). Antioxidant power quantification of decoction and cold infusions of Hibiscus sabdariffa flowers. Food Chem, 100, 433–438.

18. Puranik, P., Modak, J., Paknikar, K. (2005). A comparative study of the mass transfer kinetics of metal biosorption by microbial biomass. Hydrometallurgy, 52, 189–197.

19. Ramakrishna, G., Susmita, M. (2012). Application of response surface methodology for optimization of Cr(III) and Cr(VI) adsorption on commercial activated carbons. Research Journal of Chemical Sciences, 2(2), 40–48.

20. Razafsha, A., Ziarati, P. (2016). Removal of Heavy Metals from Oryza sativa rice by sour lemon peel as bio–sorbent. Biomedical Pharmacol J, 9 (2), 739–749.

21. Rodrigues, S., Pinto, G.A.S. (2007). Ultrasound extraction of phenolic compounds from coconut (Cocos Nucifera) shell powder. Journal of Food Engineering, 80, 869–872.

22. Saghali, M., Baqraf, R., Nejatkhah Manavi, P., Abbas Hosseini, S., Patymar, R. (2013). Assignment of concentration of heavy metals (Cr, Zn, Cd, Pb) in sediments of Gorgan Bay and South East the Caspian Sea (Golestan Province – Iran). Environment and Ecology Research, 1(2), 27–31.

23. Salazar–Gonzales, C., Vergarar–Balderas, F.T., Ortega–Rogules, A.E., Guerreobeltran, J.A.(2012). Antioxidant properties and color of Hibiscus Sabdariffa L. extract, Cien. Inv. Agric, 39 (1), 79–90.

24. Salman, H., Abbas Ibrahim, M., Tarek, I., Mostafa, M., Sulaymon, H. (2014). Biosorption of Heavy Metals: A Review. Journal of Chemical Science and Technology, 3(4), 74–102.

25. Satapathy, D., Natarajan, G. S. (2006). Potassium bromated modification of the granular activated carbon and its effect on nickel adsorption. Adsorption, 12, 147–154.

26. Seifi–Nigje Gheshlagh, F., Ziarati, P., Arbabi Bidgoli, S. (2013). Seasonal fluctuation of heavy metal and nitrate pollution in ground water of farmlands in Talesh Gilan, Iran. International Journal of Farming and Allied Sciences, 2(20), 836–841.

27. Shil, J., Nawaz, H., Pohorly, J., Mittal, G., Kakuda, Y., Jiang, Y. (2005). Extraction of polyphenolics from plant material for functional foods–engineering and technology. Food Rev. Int., 21, 139–166.

28. Sinha, R. K., Heart, S., Tandon, P. K. (2004). Phytoremediation: role of plants in contaminated site management. Book of Environmental Bioremediation Technologies, 315–330, Springer, Berlin, Germany, ISBN: 978-1-60741-761-3.

29. Siti Nur, A. A., Mohd Halim, S. I., Lias Kamal, M. D., Izhar, S. (2013). Adsorption Process of Heavy Metals by Low–Cost Adsorbent: A Review. World Applied Sciences Journal, 28, 1518–1530.

30. Srivastava, S., Mishra, S., Dwivedi, S., Baghel, V. S. at al. (2005). Nickel Phytoremediation Potential of Broad Bean, Vicia faba L. and its Biochemical Responses. Bull. Environ. Contam. Toxicol, 74, 715–724.

31. Subhashini, V., Swamy, A.V.V.S. (2013). Phytoremediation of Pb and Ni Contaminated Soils Using Catharanthus roseus (L.). Universal Journal of Environmental Research and Technology, 3(4), 465–472.

32. UN–Water. (2016). Water and Sanitation Interlinkages across the 2030 Agenda for Sustainable Development. Geneva. Available: www.Water–and–Sanitation–Interlinkages%20(1).pdf.

33. Wang, S., Ang, H. M., Tade, M. O. (2008). Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere, 72, 1621–1635.

34. Yadanaparthi, S. K. R., Graybill, D., Wandruszka, R. (2009). Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. J. of Hazard Mater., 171, 1–15.

35. Yazdanparast, S., Ziarati, P., Asgarpanah, J. (2014). Heavy Metals and Mineral Content and Nutritive Value of Some Iranian Manna. BBRA, 11(2), 1025–1029.

36. Yoon, J. M., Van Aken, B., Schnoor, J. L. (2006). Leaching of contaminated leaves following uptake and phytoremediation of RDX, HMX, and TNT by poplar. International Journal of Phytoremediation, 8(1), 81–94.

37. Ziarati, P., Azizi, N. (2013). Chemical characteristics and mineral contents in whole rice grains, hulls, brown rice, bran and polished Ali Kazemi Rice in Gilan province – North of Iran. Int J Farm & Alli Sci, 2, 1203–1209.

38. Ziarati, P., MirMohammad–Makki, F., Moslehishad, M. (2016). Novel Adsorption Method for Contaminated Water by Wild Endemic Almond: Amygdalus scoparia. Biosciences Biotechnology Research Asia, 13(1), 147–153.

39. Ziarati, P., Mohsenin Moshiri, I., Sadeghi, P. (2017). Bio–adsorption of Heavy Metals from Aqueous Solutions by Natural and Modified non–living Roots of Wild Scorzonera incisa DC. J Sci Discov, 1(1), jsd17010. DOI:10.24262/jsd.1.1.17010.

40. Ziarati, P., Rabizadeh, H. (2013). Safety and Nutritional Comparison of Fresh, Cooked and Frozen Mushroom (Agaricus bisporus). Intl J Farm & Alli Sci, 2, 1141–1147.

 

ЛІТЕРАТУРА

1. Abbaslou H., Martin F., Abtahi A., Moore F. Trace element concentrations and background values in the arid soils of Hormozgan Province of southern Iran // Archives of Agronomy and Soil Science. 2014. Vol. 60(8). Р. 1125–1143. Available: http://dx.doi.org/10.1080/03650340.2013.864387).

2. Ahmadi M., Ziarati P., Manshadi M., Asgarpanah J., Mousavi Z. The Phytoremediation Technique for Cleaning Up Contaminated Soil by Geranium (Pelargonium roseum) // Int J Farm & Alli Sci. 2013. Vol. 2(15). Р. 477–481.

3. AOAC. Method 962.09. Official Methods of Analysis of AOAC International, 17th ed. 14 ed., AOAC International, Gaithersburg: Maryland USA. 2000. ISBN: 0935584676 9780935584677.

4. Babel S., Kurniawan T. A. Various treatment technologies to remove arsenic and mercury from contaminated groundwater: an overview // Proceedings of the First International Symposium on Southeast Asian Water Environment, Bangkok, Thailand. 2003, 24–25 October. Р. 433–440.

5. Brady D., Stoll A. D., Starke L., Duncan J. R. Bioaccumulation of metal cations by Saccharomyces cerevisiae // Appl. Microbiol. Biotechnol. 1994. Vol. 41. Р. 149–154.

6. Brierley C.L. Bioremediation of metal–contaminated surface and ground – water // Geomicrobiol. J. 1993. Vol. 8. Р. 201–213.

7. Buasri A. T., Chaiyut N., Tapang K., Jaroensin S., Panphrom S. Biosorption of Heavy Metals from Aqueous Solutions Using Water Hyacinth as a Low Cost Biosorbent // Civil and Environmental Research. 2012. Vol. 2(2). Р. 17–25.

8. Dadgar S., Teimoori B., Yousefi S., Tabatabaei M. Determination of PCB levels in skin and muscle of northern pike (Esox lucius) in Anzali Wetland // Iran. Annals of Biological Research. 2014. Vol. 1. Р. 112–117. Available: http://www.scholarsresearchlibrary.com.

9. Fenglian F. U., Wang Q. Removal of heavy metal ions from wastewaters: A review // Journal of Environmental Management. 2011. Vol. 92(3). Р. 407–418.

10. Krauter P., Martinelli R., Williams K., Martins S. Removal of Cr(VI) from ground water by Saccharomyces cerevisiae // Biodegradation. 1996. Vol. 7. Р. 277–286.

11. Kwon J. S., Yun S. T., Lee J. H., Kim S. O., Jo, H. Y. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic (III) from aqueous solutions using scoria: kinetics and equilibrium of sorption // J. of Hazard Mater. 2010. Vol. 174. Р. 307–313.

12. Motaghi M., Ziarati P. Adsorptive Removal of Cadmium and Lead from Oryza sativa Rice by Banana Peel as Biosorbent // Biomed Pharmacology J. 2016. Vol. 9(2). Р. 543–553.

13. Nriagu J. O. Global inventory of natural and anthropogenic emission of trace metals to the atmosphere // Nature Journal. 1979. Vol. 279. Р. 409–411.

14. ORA Laboratory Manual FDA. Office of Regulatory Affairs. Office of Regulatory Science, 2013. Vol. 6. Document No: Iv–02, Version No: 1.5, Effective Date: 10–01–03 Revised: 02–14–13. Available: http://www.fda.gov/downloads/ScienceResearch/FieldScience/UCM092226.pdf.

15. Pouget P. M., Vennat B., Lejeune B., Pourrat A. Extraction, analysis and study of the stability of Hibiscus anthocyanins // Lebensm. Wiss. U. Techno. 1990. Vol. 23. Р. 103–105.

16. Pourzare A., Ziarati P., Mousavi Z., Faraji A. R. Removing Cadmium and Nickel Contents in Basil Cultivated in Pharmaceutical Effluent by chamomile (Matricaria chamomilla L.) Tea Residue // J Sci Discov. 2017. Vol. 1(1). jsd17006. DOI:10.24262/jsd.1.1.17006.

17. Prenesti E., Berto S., Daniele P., Toso S. Antioxidant power quantification of decoction and cold infusions of Hibiscus sabdariffa flowers // Food Chem. 2007. Vol. 100. Р. 433–438.

18. Puranik P., Modak J., Paknikar K. A comparative study of the mass transfer kinetics of metal biosorption by microbial biomass // Hydrometallurgy. 2005. Vol. 52. Р. 189–197.

19. Ramakrishna G., Susmita M. Application of response surface methodology for optimization of Cr(III) and Cr(VI) adsorption on commercial activated carbons // Research Journal of Chemical Sciences. 2012. Vol. 2(2). Р. 40–48.

20. Razafsha A., Ziarati P. Removal of Heavy Metals from Oryza sativa rice by sour lemon peel as bio–sorbent // Biomedical Pharmacol J. 2016. Vol. 9 (2). Р. 739–749.

21. Rodrigues S., Pinto G.A.S. Ultrasound extraction of phenolic compounds from coconut (Cocos Nucifera) shell powder // Journal of Food Engineering. 2007. Vol. 80. Р. 869–872.

22. Saghali M., Baqraf R., Nejatkhah Manavi P., Abbas Hosseini S., Patymar R. Assignment of concentration of heavy metals (Cr, Zn, Cd, Pb) in sediments of Gorgan Bay and South East the Caspian Sea (Golestan Province – Iran) // Environment and Ecology Research. 2013. Vol. 1(2). Р. 27–31.

23. Salazar–Gonzales C., Vergarar–Balderas F. T., Ortega–Rogules A. E., Guerreobeltran J. A. Antioxidant properties and color of Hibiscus Sabdariffa L. extract // Cien. Inv. Agric. 2012. Vol. 39 (1). Р. 79–90.

24. Salman H., Abbas Ibrahim M., Tarek I., Mostafa M., Sulaymon H. Biosorption of Heavy Metals: A Review // Journal of Chemical Science and Technology. 2014. Vol. 3(4). Р. 74–102.

25. Satapathy D., Natarajan G. S. Potassium bromated modification of the granular activated carbon and its effect on nickel adsorption // Adsorption. 2006. Vol. 12. Р. 147–154.

26. Seifi–Nigje Gheshlagh F., Ziarati P., Arbabi Bidgoli S. Seasonal fluctuation of heavy metal and nitrate pollution in ground water of farmlands in Talesh Gilan, Iran // International Journal of Farming and Allied Sciences. 2013. Vol. 2(20). Р. 836–841.

27. Shil J., Nawaz H., Pohorly J., Mittal G., Kakuda Y., Jiang Y. Extraction of polyphenolics from plant material for functional foods–engineering and technology // Food Rev. Int. 2005. Vol. 21. Р. 139–166.

28. Sinha R. K., Heart S., Tandon P. K. Phytoremediation: role of plants in contaminated site management. Book of Environmental Bioremediation Technologies. 2004. Р. 315–330. Springer, Berlin, Germany, ISBN: 978-1-60741-761-3.

29. Siti Nur A. A., Mohd Halim S. I., Lias Kamal M. D., Izhar S. Adsorption Process of Heavy Metals by Low–Cost Adsorbent: A Review // World Applied Sciences Journal. 2013. Vol. 28. Р. 1518–1530.

30. Srivastava S., Mishra S., Dwivedi S., Baghel V. S. at al. Nickel Phytoremediation Potential of Broad Bean, Vicia faba L. and its Biochemical Responses. Bull // Environ. Contam. Toxicol. 2005. Vol. 74. Р. 715–724.

31Subhashini V., Swamy A.V.V.S. Phytoremediation of Pb and Ni Contaminated Soils Using Catharanthus roseus (L.) // Universal Journal of Environmental Research and Technology. 2013. Vol. 3(4). Р. 465–472.

32. UN–Water. Water and Sanitation Interlinkages across the 2030 Agenda for Sustainable Development. Geneva, 2016). Available: www.Water–and–Sanitation–Interlinkages%20(1).pdf.

33. Wang S., Ang H. M., Tade M. O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes // Chemosphere. 2008. Vol. 72. Р. 1621–1635.

34. Yadanaparthi S. K. R., Graybill D., Wandruszka R. Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters // J. of Hazard Mater. 2009. Vol. 171. Р. 1–15.

35. Yazdanparast S., Ziarati P., Asgarpanah J. Heavy Metals and Mineral Content and Nutritive Value of Some Iranian Manna // BBRA. 2014. Vol. 11(2). Р. 1025–1029.

36. Yoon J. M., Van Aken B., Schnoor J. L. Leaching of contaminated leaves following uptake and phytoremediation of RDX, HMX, and TNT by poplar // International Journal of Phytoremediation. 2006. Vol. 8(1). Р. 81–94.

37. Ziarati P., Azizi N. Chemical characteristics and mineral contents in whole rice grains, hulls, brown rice, bran and polished Ali Kazemi Rice in Gilan province – North of Iran // Int J Farm & Alli Sci. 2013. Vol. 2. Р. 1203–1209.

38. Ziarati P., MirMohammad–Makki F., Moslehishad M. Novel Adsorption Method for Contaminated Water by Wild Endemic Almond: Amygdalus scoparia // Biosciences Biotechnology Research Asia. 2016. Vol. 13(1). Р. 147–153.

39. Ziarati P., Mohsenin Moshiri I., Sadeghi P. Bio–adsorption of Heavy Metals from Aqueous Solutions by Natural and Modified non–living Roots of Wild Scorzonera incisa DC // J Sci Discov. 2017. Vol. 1(1). Р. jsd17010. DOI:10.24262/jsd.1.1.17010.

40. Ziarati P., Rabizadeh H. Safety and Nutritional Comparison of Fresh, Cooked and Frozen Mushroom (Agaricus bisporus) // Intl J Farm & Alli Sci. 2013. Vol. 2. Р. 1141–1147.