Analysis of removal methods of toxic heavy metals using bio-absorbs

Parisa Ziarati, Mahdieh Mostafidi, Faezeh Shirkhan, Maryam Tamaskani Zahedi

DOI: 10.5281/zenodo.1402587

Received: 30 July 2018

Accepted: 23 August 2018

Published online: 25 August 2018

  ABSTRACT

The heavy metals pollution among various types of contaminations is a serious hazard for environment and human health. Different methods of removing heavy metals have different advantages and disadvantages, among them biological techniques of absorption/ adsorption have been considered. The main benefits of biological absorption, compared with the conventional methods, are low cost, high efficiency, reducing chemical and/or environmental sludge, no need for additional nutrients, and the possibility of recycling of metals. The absorption of heavy metals by microbial cells is recognized as a potential alternative to existing technologies of removal of toxic heavy metals using waste from the food industry and agricultural wastes as bio-absorbs. Therefore, the main the goal of this article is evaluate the potential and advisability and effectiveness of using food industry waste and agricultural waste to remove or significantly reduce toxic heavy metals from contaminated food and water. And also to study the mechanisms of using of waste from the food industry and agricultural wastes as bio-absorbs to determine the best option of using, what would improve it. To achieve the goal, the work has been studied and analyzed all attainable sources of agro based low-cost reasonable adsorbents for their feasibility in the removal of heavy metals from food stuff and contaminated water. Since most of the researches have been carried out in pilot form and has not been tested at the industrial level, then it is necessary to improve these methods for their implementation and utilization in the treatment of the industrial contaminated water and also food products. From the analysis it is evident that the most attractive as bio-absorbs are such materials such as potato peel, sawdust, citrus peels, mango peel, corn cob, rice husk, tree fern, wheat bran, grape bagasse, coconut copra meal, orange waste, walnut, hazelnut, almond shell, tea waste. And especially the use of these materials is attractive from the economic point of view as the most affordable and cheap.

 Keywords: heavy metals, biodegradable, agricultural waste, microbial biomass.

 REFERENCES

1. Abbas, S. H, Ibrahim, M., Ismail, T. M. M., Sulaymon, H. A. (2014). Biosorption of heavy metals : a review. Journal of chemical science and technology, 3, 74–102.

2. Abdi, O., Kazemi, M. (2015). A review study of biosorption of heavy metals and comparison between different biosorbents. Journal of materials and environmental science, 6(5), 1386–1399.

3. Ahmad Khan, N., Ibrahim, S., Subramaniam, P. (2004). Elimation of heavy metals from wastewater using agricultural wastes as adsorbents. Malaysian journal of science, 23(1). Available: http://repository.um.edu.my/id/eprint/1335.

4. Akar, T., Tunali, S., Kiran, I. (2005). Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochemical engineering journal, 25(3), 227–235. doi: 10.1016/j.bej.2005.05.006.

5. Akbari-Adergani, B., Rahnama, S., Shirkhan, F. (2017). Lead and cadmium contaminations in soil and irrigation water and their accumulation in pith, flesh and skin of kiwifruit in Astara, north of Iran 2015. Journal of mazandaran university of medical sciences, 27(154), 162–172.

6. Akhtar, N., Saeed, A., Iqbal, M. (2003). Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium. Bioresource technology, 88(2), 163–165. doi: 10.1016/S0960-8524 (02)00289-4.

7. Alimardan, M., Ziarati, P., Jafari Moghadam, R. (2016). Adsorption of heavy metal ions from contaminated soil by B. integerrima barberry. Biomedical and pharmacology journal, 9(1), 169–175. doi: 10.13005/bpj/924.

8. Al-Qahtani, K. M. (2016). Water purification using different waste fruit cortexes for the removal of heavy metals. Journal of taibah university for science, 10(5), 700–708. doi: 10.1016/j.jtusci.2015.09.001.

9. Arvanitoyannis, I. (2008). Waste management for the food industries. Elsivier academic press, 586.

10. Ayangbenro, A. S., Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International journal of environmental research and public health, 14(1), 94. doi: 10.3390/ijerph14010094.

11. Baiano, A. (2014). Recovery of biomolecules from food wastes – a review. Molecules, 19(9), 14821–14842. doi: 10.3390/molecules190914821.

12. Sagdeeva, О., Krusir, G., Tsykalo, A., Leuenberger, H. (2018). Doslidzhennya protsesiv kompostuvannya kharchovoyi skladovoyi tverdykh pobutovykh vidkhodiv. Naukovo-tekhnichnyy zhurnal «Tekhnohenno-ekolohichna bezpeka», 4(2/2018), 13–21. doi10.5281/zenodo.1244572.

13. Bharat, S., Manchanda, D. (2017). Efficient bio adsorbents for removal of heavy metals from water: a review. IJCS, 5(4), 1691–1694.

14. Çay, S., Uyanik, A., Özaşik, A. (2004). Single and binary component adsorption of copper(II) andcadmium(II) from aqueous solutions using tea-industry waste. Separation and purification technology, 38(3), 273–280. doi: 10.1016/j.seppur.2003.12.003.

15. Çelekli, A., Yavuzatmaca, M., Bozkurt, H. (2010). An eco-friendly process: predictive modelling of copper adsorption from aqueous solution on spirulina platensis. Journal of hazardous materials, 173(1–3), 123–129. doi: 10.1016/j.jhazmat.2009.08.057.

16. Dhankhar, R., Hooda, A. (2011). Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental technology, 32(5), 467–491. doi: 10.1080/09593330.2011.572922.

17. Dhir, B., Kumar, R. (2010). Adsorption of heavy metals by salvinia biomass and agricultural residues. International journal of environmental research, 4(3), 427–432. doi: 10.22059/ijer.2010.61.

18. Dönmez, G., Aksu, Z. (2002). Removal of chromium(VI) from saline wastewaters by dunaliella species. Process biochemistry, 38(5), 751–762. doi: 10.1016/S0032–9592(02)00204–2.

19. Dursun, A. Y., Uslu, G., Cuci, Y., Aksu, Z. (2003). Bioaccumulation of copper(II), lead(II) and chromium(VI) by growing aspergillus niger. Process biochemistry, 38, 1647–1651.

20. Elly, S. (2011). Utilising agricultural waste to enhance food security and conserve the environment. African journal of food, agriculture, nutrition and development, 11(6), 1–9.

21. Vambol, S., Kondratenko, O. (2017). Results of complex criterial fuel and ecological assessment of diesel engine 2Ch10.5/12 for emergency and rescue power plants. Naukovo-tekhnichnyy zhurnal «Tekhnohenno-ekolohichna bezpeka», 1, 32–38. doi: 10.5281/zenodo.1182876.

22. El-Sayed, H. E., El-Sayed, M. M. (2014). Assessment of food processing and pharmaceutical industrial wastes as potential biosorbents: a review. BioMed research international, 2014, 1–24. Available: http://dx.doi.org/10.1155/
2014/146769.

23. Fadel, M., Naziha, M., Hassanein, M. et al. (2017). Biosorption of manganese from groundwater by biomass of saccharomyces cerevisiae. HBRC Journal, 13(1), 106–113. Available: https://doi.org/10.1016/j.hbrcj.2014.12.006.

24. Koloskov, V. (2018). Vyznachennya znachushchykh pokaznykiv kryteriyu ekolohichnoho rezervu terytoriy, prylehlykh do mistsʹ zberihannya vidkhodiv. Naukovo-tekhnichnyy zhurnal «Tekhnohenno-ekolohichna bezpeka», 3(1/2018), 44–51.  doi: 10.5281/zenodo.1182841.

25. Fan, J., Tugba, O., Frigi Rodrigues, D. (2014). The synergism of temperature, ph and growth phases on heavy metal biosorption by two environmental isolates. Journal of hazardous materials, 279, 236–243. doi: 10.1016/j.jhazmat.2014.07.016.

26. Fan, T., Liu, Y., Feng, B. et al. (2008). Biosorption of cadmium(II), zinc(II) and lead(II) by penicillium simplicissimum: isotherms, kinetics and thermodynamics. Journal of hazardous materials, 160(2–3), 655–661. doi: 10.1016/j.jhazmat.2008.03.038.

27. Fomina, M., Gadd, G. M. (2014). Biosorption: current perspectives on concept, definition and application. Bioresource technology, 160, 3–14. Available: http://dx.doi.org/10.1016/j.biortech.2013.12.102.

28. Freitas, O. M. M., Ramiro, J. E., Martins, D.-M. et al. (2008). Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: kinetic modelling. Journal of hazardous materials, 153(1–2), 493–501. doi: 10.1016/j.jhazmat.2007.08.081.

29. Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 92, 407–418. doi: 10.1016/j.jenvman.2010.11.011.

30. Gardas, B., Rakesh, D. R., Narkhede, B. (2017). Modeling causal factors of post-harvesting losses in vegetable and fruit supply chain: an Indian perspective. Renewable and sustainable energy reviews, 80 (August), 1355–1371. doi: 10.1016/j.rser.2017.05.259.

31. Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 4(3), 219–232. Available: https://doi.org/10.1002/elsc.200420026.

32. Green-Ruiz, C., Rodriguez-Tirado, V., Gomez-Gil, B. (2008). Cadmium and zinc removal from aqueous solutions by bacillus jeotgali: pH, salinity and temperature effects. Bioresource technology, 99(9), 3864–3870. doi: 10.1016/j.biortech.2007.06.047.

33. Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L. (2009). Low-cost adsorbents: growing approach to wastewater treatment – a review. Critical reviews in environmental science and technology, 39(10), 783–842. doi.org/10.1080/10643380801977610.

34. Gupta, V. K., Nayak, N., Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environmental engineering research, 20(1), 1–18. doi: 10.4491/eer.2014.018.

35. Gupta, V. K., Rastogi, A. (2008). Biosorption of Lead from aqueous solutions by green algae spirogyra species: kinetics and equilibrium studies. Journal of hazardous materials, 152(1), 407–414. doi: 10.1016/j.jhazmat.2007.07.028.

36. Hansen, H. K., Alexandra, R., Mateus, E. (2006). Biosorption of arsenic(V) with Lessonia Nigrescens. Minerals engineering, 19(5), 486–490. doi: 10.1016/j.mineng.2005.08.018.

37. Haq, F., Butt, M., Hazrat, A., Chaudhary, H. A. (2016). Biosorption of cadmium and chromium from water by Endophytic Kocuria Rhizophila: equilibrium and kinetic studies. Desalination and water treatment, 57(42), 19946–19958. doi: 10.1080/19443994.2015.1109561.

38. Hasan, S. H., Srivastava, P. (2009). Batch and continuous biosorption of Cu2+ by immobilized biomass of Arthrobacter sp. Journal of environmental management, 90(11), 3313–3321. doi: 10.1016/j.jenvman.2009.05.005.

39. Hegazi, H. A. (2013). Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC Journal, 9(3), 276–282. doi: 10.1016/j.hbrcj.2013.08.004.

40. Jin, Y., Sumei, Y., Chunying, T. et al. (2017). Biosorption characteristic of Alcaligenes sp. BAPb.1 for removal of lead(II) from aqueous solution. 3 Biotech, 7(2), 123. doi: 10.1007/s13205-017-0721-x.

41. Kim, I. H., Jin, H. C., Jeong Ock, J. et al. (2015). Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. Journal of microbiology and biotechnology, 25(9), 1542–1546. doi: 10.4014/jmb.1504.04067.

42. Koel Banerjee, S. T., Ramesh, R., Gandhimathi, P. V. et al. (2012). A novel agricultural waste adsorbent, watermelon shell for the removal of copper from aqueous solutions. Iranica journal of energy & environment, 3(2), 143–156. doi: 10.5829/idosi.ijee.2012.03.02.0396.

43. Kumar, U., Bandyopadhyay, M. (2006). Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresource technology, 97(1), 104–109. doi: 10.1016/j.biortech.2005.02.027.

44. Lee, Y. C., Chang, S. P. (2011). The biosorption of heavy metals from aqueous solution by spirogyra and cladophora filamentous macroalgae. Bioresource technology, 102(9), 5297–5304. doi: 10.1016/j.biortech.2010.12.103.

45. Li, J., Lin, Q., Zhang, X. (2010). Mechanism of electron transfer in the bioadsorption of hexavalent chromium within Leersia hexandra Swartz granules by X-ray photoelectron spectroscopy. Journal of hazardous materials, 182(1–3), 598–602. doi: 10.1016/ j.jhazmat. 2010.06.074.

46. Lu, W. B., Shi, J. J., Wang, C. H., Chang, J. S. (2006). Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. Journal of hazardous materials, 134(1–3), 80–86. doi: 10.1016/j.jhazmat.2005.10.036.

47. Malik, D. S., Jain, C. K., Anuj, K. Y. (2017). Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Applied water science, 7(5), 2113–2136. doi: 10.1007/s13201-016-0401-8.

48. Malkoc, E., Nuhoglu, Y. (2005). Investigations of nickel(II) removal from aqueous solutions using tea factory waste. Journal of hazardous materials, 127(1–3), 120–128. doi: 10.1016/j.jhazmat.2005.06.030.

49. Motaghi, M., Ziarati, P. (2016). Adsorptive removal of cadmium and lead from oryza sativa rice by banana peel as bio-sorbent. Biomedical & Pharmacology Journal, 9(2), 739–749. doi: 10.13005/bpj/998.

50. Mthew, B., Jaishankar, M., George Biju, V., Krishnamurthy Nideghatta, B. (2016). Role of bioadsorbents in reducing toxic metals. Journal of toxicology, 2016, 1–13. doi: 10.1155/2016/4369604.

51. Mustapha, M. U., Halimoon, N. (2015). Microorganisms and biosorption of heavy metals in the environment: a review paper. J. Microb. Biochem. Technol, 7, 253–256, doi: 10.4172/1948–5948.1000219.

52. Muter, O., Lubinya, I., Millers, D. et al. (2002). Cr(VI) sorption by intact and dehydrated candida utilis cells in the presence of other metals. Process biochemistry, 38(1), 123–131. doi: 10.1016/S0032-9592(02)00065-1.

53. Nakbanpote, W., Thiravetyan, P., Kalambaheti, C. (2000). Preconcentration of gold by rice husk ash. Minerals engineering, 13(4), 391–400. doi: 10.1016/S0892-6875(00)00021-2.

54. Obi, F. O., Ugwuishiwu, B. O., Nwakaire, J. N. (2016). Agricultural waste concept, generation, utilization and management. Nigerian journal of technology (NIJOTECH), 35(4), 957–964. doi: 10.4314/njt.v35i4.34.

55. Balaceanu, C. M., Iordache, G. (2018). Assessment of the air pollution at the industrial stations in metropolitan area of Bucharest. Naukovo-tekhnichnyy zhurnal «Tekhnohenno-ekolohichna bezpeka», 3(1/2018), 8–15. doi: 10.5281/zenodo.1182485.

56. Özer, A., Özer, U. (2003). Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. Cerevisiae: determination of biosorption heats. Journal of hazardous materials, 100(1–3), 219–229. doi: 10.1016/S0304-3894(03)00109-2.

57. Vambol, V., Rashkevich, N. (2017). Analysis of methods of identification of ecologically danger substances in atmospheric air. Naukovo-tekhnichnyy zhurnal «Tekhnohenno-ekolohichna bezpeka», 2, 73–78. doi: 10.5281/zenodo.1182894.

58. Patel, S. (2012). Potential of fruit and vegetable wastes as novel biosorbents: summarizing the recent studies. Reviews in environmental science and bio-technology, 11(4), 365–380.

59. Puyen, Z. M., Eduard, V., Maldonado, J. et al. (2012). Biosorption of lead and copper by heavy-metal tolerant micrococcus luteus DE2008. Bioresource technology, 126, 233–237. doi: 10.1016/j.biortech.2012.09.036.

60. Quintelas, C., Zélia, R., Bruna, S. et al. (2009). Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chemical engineering journal, 149(1–3), 319–324. doi: 10.1016/j.cej.2008.11.025.

61. Rajkumar, M., Freitas, H. (2008). Influence of metal resistant-plant growth-promoting bacteria on the growth of ricinus communis in soil contaminated with heavy metals. Chemosphere, 71(5), 834–842. doi: 10.1016/j.chemosphere.
2007.11.038.

62. Rao, K. S., Mohapatra, M., Anand, S., Venkateswarlu, P. (2010). Review on cadmium removal from aqueous solutions. International journal of engineering, science and technology, 2(7). Available: https://www.ajol.info/
index.php/ijest/article/view/63747.

63. Reddy, N., Yang, Y. (2005). Biofibers from agricultural byproducts for industrial applications. Trends in biotechnology, 23(1), 22–27. doi: 10.1016/j.tibtech.2004.11.002.

64. Romera, E., González, F., Ballester, A. et al. (2007). Comparative study of biosorption of heavy metals using different types of algae. Bioresource technology, 98 (17), 3344–3353. doi: 10.1016/j.biortech.2006.09.026.

65. Sameera, V., Naga Deepthi, C. H., Srinu Babu, G., Ravi Teja, Y. (2011). Role of biosorption in environmental cleanup. J. Microbial. Biochem. Technol. R1:001. doi: 10.4172/1948-5948.R1-001.

66. Shekhar, R., Biswas, S. (2015). Heavy metals removal from food waste water of raipur area using bioadsorbents. International journal of advanced research, 4(2), 72–78. Available: http://www.garph.co.uk/IJAREAS/Feb2015/6.pdf.

67. Sinha, A., Kamal Kishore, P., Kumar Khare, S. (2012). Studies on mercury bioremediation by alginate immobilized mercury tolerant bacillus cereus cells. International biodeterioration and biodegradation, 71, 1–8. doi: 10.1016/j.ibiod.
2011.12.014.

68. Sooksawat, N., Meetam, M., Kruatrachue, M. et al. (2016). Equilibrium and kinetic studies on biosorption potential of charophyte biomass to remove heavy metals from synthetic metal solution and municipal wastewater. Bioremediation journal, 20(3), 240–251. doi: 10.1080/10889868.2016.1212810.

69. Tavakoli-Hosseinabady, B., Ziarati, P., Ballali, E., Umachandran, K. (2018a). Environmental and analytical toxicology detoxification of heavy metals from leafy edible vegetables by agricultural waste: apricot pit shell. Journal of environmental & analytical toxicology, 8(1), 1–8. doi: 10.4172/2161–0525.1000548.

70. Ungureanu, G., Santos, S., Boaventura, R., Botelho, C. (2015). Biosorption of antimony by brown algae S. muticum and A. nodosum. Environmental engineering and management journal, 14(2), 455–463.

71. Uzel, A., Ozdemir, G. (2009). Metal biosorption capacity of the organic solvent tolerant Pseudomonas fluorescens TEM08. Bioresource technology, 100(2), 542–48. doi: 10.1016/j.biortech.2008.06.032.

72. Verma, A., Singh, A., Bishnoi, N. R., Gupta, A. (2013). Biosorption of Cu(II) using free and immobilized biomass of penicillium citrinum. Ecological engineering, 61, 486–490. doi: 10.1016/j.ecoleng.2013.10.008.

73. Vijayaraghavan, K., Jegan, J., Palanivelu, K., Velan, M. (2005). Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Separation and purification technology, 44(1), 53–59. doi: 10.1016/j.seppur.
2004.12.003.

74. Villaescusa, I., Núria, F., Martínez, M. et al. (2004). Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water research, 38(4), 992–1002. doi: 10.1016/j.watres.2003.10.040.

75. Volland S., Schaumlöffel D., Dobritzsch D. et al. (2013). Identification of phytochelatins in the cadmium-stressed conjugating green alga micrasterias denticulata. Chemosphere, 91(4), 448–454. doi: 10.1016/j.chemosphere.2012.11.064.

76. Yan, G., Viraraghavan, T. (2001). Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresource technology, 78, 243–249. doi: 10.1080/19443994.2013.800287.

77. Ye, H., Zhu, Q., Du, D. (2010). Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk. Bioresource technology, 101(14), 5175–5179. doi: 10.1016/j.biortech.2010.02.027.

78. Yong-Qian, F. (2012). Biosorption of copper(II) from aqueous solution by mycelial pellets of rhizopus oryzae. African journal of biotechnology, 11(6), 1403–1411. doi: 10.5897/AJB11.2809.

79. Ziagova, M., Dimitriadis, G., Aslanidou, D. et al. (2007). Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresource technology, 98(15), 2859–2865. doi: 10.1016/j.biortech.2006.09.043.

80. Ziarati, P., Kermanshah, A., Moslehishad, M. (2015). Adsorption heavy metal from contaminated water by modified shell of wild endemic almonds: amygdalus lycioides and amygdalus wendelboi. Biosciences biotechnology research Asia, 12(3), 2451–2457. doi: 10.13005/bbra/1923.

81. Ziarati, P., Namvar, S., Sawicka, B. (2018). Heavy metals bio-adsorrption by Hibiscus Sabdariffa L. from contaminated weater. Naukovo-tekhnichnyy zhurnal «Tekhnohenno-ekolohichna bezpeka», 4(2/2018), 22–32. doi: 10.5281/zenodo.1244568.

82. Ziarati, P., Shirkhan, F., Mostafidi, M., Tamaskoni Zahedi, M. (2018b). An overview of the heavy metal contamination in milk and dairy products. Acta scientific pharmaceutical sciences, 2(7), 8–21.

83. Zouboulis, A. I., Loukidou, M. X., Matis, K. A. (2004). Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process biochemistry, 39(8), 909–916. doi: 10.1016/S0032-9592(03)00200-0.

84. Kolesnyk, V. Ye., Pavlychenko, A. V., Buchavyy, Yu. V. (2018). Unifikovana metodyka kompleksnoho otsinyuvannya rivnya ekolohichnoyi nebezpeky promyslovykh obʺyektiv ta tekhnolohiy. Naukovo-tekhnichnyy zhurnal «Tekhnohenno-ekolohichna bezpeka», 3(1/2018), 64–69. doi: 10.5281/zenodo.1182847.

 

ЛІТЕРАТУРА

1. Biosorption of heavy metals: a review / Abbas S. H, Ibrahim M., Ismail T. M. M., Sulaymon H. A. // Journal of chemical science and technology. 2018. Issue 3. P. 74–102.

2. Abdi O., Kazemi M. A review study of biosorption of heavy metals and comparison between different biosorbents // Journal of materials and environmental science. 2015. Vol. 6, Issue 5. Р. 1386–1399.

3. Ahmad Khan N., Ibrahim S., Subramaniam P. Elimation of heavy metals from wastewater using agricultural wastes as adsorbents // Malaysian journal of science. 2004. Vol. 23, Issue 1. Available: http://repository.um.edu.
my/id/eprint/1335.

4. Akar T., Tunali S., Kiran I. Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions // Biochemical engineering journal. 2005. Vol. 25, Issue 3. Р. 227–235. doi: 10.1016/j.bej.2005.05.006.

5. Akbari-Adergani B., Rahnama S., Shirkhan F. Lead and cadmium contaminations in soil and irrigation water and their accumulation in pith, flesh and skin of kiwifruit in Astara, north of Iran 2015 // Journal of mazandaran university of medical sciences. 2017. Vol. 27, Issue 154. Р. 162–172.

6. Akhtar N., Saeed A., Iqbal M. Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium // Bioresource technology. 2003. Vol. 88, Issue 2. Р. 163–165. doi: 10.1016/S0960-8524 (02)00289-4.

7. Alimardan M., Ziarati P., Jafari Moghadam R. Adsorption of heavy metal ions from contaminated soil by B. integerrima barberry // Biomedical and pharmacology journal. 2016. Vol. 9, Issue 1. Р. 169–175. doi: 10.13005/bpj/924.

8. Al-Qahtani K. M. Water purification using different waste fruit cortexes for the removal of heavy metals // Journal of taibah university for science. 2016. Vol. 10, Issue 5. Р. 700–708. doi: 10.1016/j.jtusci.2015.09.001.

9. Arvanitoyannis I. Waste management for the food industries // Elsivier academic press. 2008. 586 р.

10. Ayangbenro A. S., Babalola O. O. A new strategy for heavy metal polluted environments: a review of microbial biosorbents // International journal of environmental research and public health. 2017. Vol. 14, Issue 1. Р. 94. doi: 10.3390/ijerph14010094.

11. Baiano A. Recovery of biomolecules from food wastes – a review // Molecules. 2014. Vol. 19, Issue 9. Р. 14821–14842. doi: 10.3390/molecules190914821.

12. Дослідження процесів компостування харчової складової твердих побутових відходів / Сагдєєва О., Крусір Г., Цикало A., Лойєнбергер Г. // Техногенно-екологічна безпека. 2018. Вип. 4(2/2018). С. 13–21. doi: 10.5281/zenodo.1244572.

13. Bharat S., Manchanda D. Efficient bio adsorbents for removal of heavy metals from water: a review // IJCS. 2017. Vol. 5, Issue 4. Р. 1691–1694.

14. Çay S., Uyanik A., Özaşik A. Single and binary component adsorption of copper(II) andcadmium(II) from aqueous solutions using tea-industry waste // Separation and purification technology. 2004. Vol. 38, Issue 3. Р. 273–280. doi: 10.1016/j.seppur.2003.12.003.

15. Çelekli A., Yavuzatmaca M., Bozkurt H. An eco-friendly process: predictive modelling of copper adsorption from aqueous solution on spirulina platensis // Journal of hazardous materials. 2010. Vol. 173, Issue 1–3. Р. 123–129. doi: 10.1016/j.jhazmat.2009.08.057.

16. Dhankhar R., Hooda A. Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions // Environmental technology. 2011. Vol. 32, Issue 5. Р. 467–491. doi: 10.1080/09593330.2011.572922.

17. Dhir B., Kumar R. Adsorption of heavy metals by salvinia biomass and agricultural residues // International journal of environmental research. 2010. Vol. 4, Issue 3. Р. 427–432. doi: 10.22059/ijer.2010.61.

18. Dönmez G., Aksu Z. Removal of chromium(VI) from saline wastewaters by dunaliella species // Process biochemistry. 2002. Vol. 38, Issue 5. Р. 751–762. doi: 10.1016/S0032–9592(02)00204–2.

19. Bioaccumulation of copper(II), lead(II) and chromium(VI) by growing aspergillus niger / Dursun A. Y., Uslu G., Cuci Y., Aksu Z. // Process biochemistry. 2003. Vol. 38. Р. 1647–1651.

20. Elly S. Utilising agricultural waste to enhance food security and conserve the environment // African journal of food, agriculture, nutrition and development. 2011. Vol. 11, Issue 6. Р. 1–9.

21. Vambol S, Kondratenko O. Results of complex criterial fuel and ecological assessment of diesel engine 2Ch10.5/12 for emergency and rescue power plants // Техногенно-екологічна безпека. 2017. Вип. 1. С. 32–38. doi: 10.5281/zenodo.1182876.

22. El-Sayed H. E., El-Sayed M. M. Assessment of food processing and pharmaceutical industrial wastes as potential biosorbents: a review // BioMed research international. 2014. Vol. 2014. Р. 1–24. Available: http://dx.doi.org/10.1155/2014/146769.

23. Biosorption of manganese from groundwater by biomass of saccharomyces cerevisiae / Fadel M., Naziha M., Hassanein M. et al. // HBRC Journal. 2017. Vol. 13, Issue 1. Р. 106–113. Available: https://doi.org/10.1016/j.
hbrcj.2014.12.006
.

24. Колосков В. Визначення значущих показників критерію екологічного резерву територій, прилеглих до місць зберігання відходів // Техногенно-екологічна безпека. 2018. Вип. 3(1/2018). С. 44–51. doi: 10.5281/zenodo.1182841.

25. Fan J., Tugba O., Frigi Rodrigues D. The synergism of temperature, ph and growth phases on heavy metal biosorption by two environmental isolates // Journal of hazardous materials. 2014. Vol. 279. Р. 236–243. doi: 10.1016/j.jhazmat.2014.07.016.

26. Biosorption of cadmium(II), zinc(II) and lead(II) by penicillium simplicissimum: isotherms, kinetics and thermodynamics / Fan T., Liu Y., Feng B. et al. // Journal of hazardous materials. 2008. Vol. 160, Issue 2–3. Р. 655–661. doi: 10.1016/j.jhazmat.2008.03.038.

27. Fomina M., Gadd G. M. Biosorption: current perspectives on concept, definition and application // Bioresource technology. 2014. Vol. 160. Р. 3–14. Available: http://dx.doi.org/10.1016/j.biortech.2013.12.102.

28. Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: kinetic modelling / Freitas O. M. M., Ramiro J. E., Martins D.-M. et al. // Journal of hazardous materials. 2008. Vol. 153, Issue 1–2. Р. 493–501. doi: 10.1016/j.jhazmat.2007.08.081.

29. Fu F., Wang Q. Removal of heavy metal ions from wastewaters: a review // Journal of environmental management. 2011. Vol. 92. Р. 407–418. doi: 10.1016/j.jenvman.2010.11.011.

30. Gardas B., Rakesh D. R., Narkhede B. Modeling causal factors of post-harvesting losses in vegetable and fruit supply chain: an Indian perspective // Renewable and sustainable energy reviews. 2017. Vol. 80 (August). Р. 1355–1371. doi: 10.1016/j.rser.2017.05.259.

31. Gavrilescu M. Removal of heavy metals from the environment by biosorption // Engineering in Life Sciences. 2004. Vol. 4, Issue 3. Р. 219–232. Available: https://doi.org/10.1002/elsc.200420026.

32. Green-Ruiz C., Rodriguez-Tirado V., Gomez-Gil B. Cadmium and zinc removal from aqueous solutions by bacillus jeotgali: pH, salinity and temperature effects // Bioresource technology. 2008. Vol. 99, Issue 9. Р. 3864–3870. doi: 10.1016/j.biortech.2007.06.047.

33. Gupta V. K., Carrott P. J. M., Ribeiro Carrott M. M. L. Low-cost adsorbents: growing approach to wastewater treatment – a review // Critical reviews in environmental science and technology. 2009. Vol. 39, Issue 10. Р. 783–842. doi.org/10.1080/10643380801977610.

34. Gupta V. K., Nayak N., Agarwal S. Bioadsorbents for remediation of heavy metals: current status and their future prospects // Environmental engineering research. 2015. Vol. 20, Issue 1. Р. 1–18. doi: 10.4491/eer.2014.018.

35. Gupta V. K., Rastogi A. Biosorption of Lead from aqueous solutions by green algae spirogyra species: kinetics and equilibrium studies // Journal of hazardous materials. 2008. Vol. 152, Issue 1. Р. 407–414. doi: 10.1016/j.jhazmat.
2007.07.028.

36. Hansen H. K., Alexandra R., Mateus E. Biosorption of arsenic(V) with Lessonia Nigrescens // Minerals engineering. 2006. Vol. 19, Issue 5. Р. 486–490. doi: 10.1016/j.mineng.2005.08.018.

37. Biosorption of cadmium and chromium from water by Endophytic Kocuria Rhizophila: equilibrium and kinetic studies / Haq F., Butt M., Hazrat A., Chaudhary H. A. // Desalination and water treatment. 2016. Vol. 57, Issue 42. Р. 19946–19958. doi: 10.1080/19443994.2015.1109561.

38. Hasan S. H., Srivastava P. Batch and continuous biosorption of Cu2+ by immobilized biomass of Arthrobacter sp. // Journal of environmental management. 2009. Vol. 90, Issue 11. Р. 3313–3321. doi: 10.1016/j.jenvman.2009.05.005.

39. Hegazi H. A. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents // HBRC Journal. 2013. Vol. 9, Issue 3. Р. 276–282. doi: 10.1016/j.hbrcj.2013.08.004.

40. Biosorption characteristic of Alcaligenes sp. BAPb.1 for removal of lead(II) from aqueous solution / Jin Y., Sumei Y., Chunying T. et al. // 3 Biotech. 2017. Vol. 7, Issue 2. Р. 123. doi: 10.1007/s13205-017-0721-x.

41. Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater // Kim I. H., Jin H. C., Jeong Ock J. et al. // Journal of microbiology and biotechnology. 2015. Vol. 25, Issue 9. Р. 1542–1546. doi: 10.4014/jmb.1504.04067.

42. A novel agricultural waste adsorbent, watermelon shell for the removal of copper from aqueous solutions / Koel Banerjee, S. T., Ramesh, R., Gandhimathi, P. V. et al. // Iranica journal of energy & environment. 2012. Vol. 3, Issue 2. Р. 143–156. doi: 10.5829/idosi.ijee.2012.03.02.0396.

43. Kumar U., Bandyopadhyay M. Sorption of cadmium from aqueous solution using pretreated rice husk // Bioresource technology. 2006. Vol. 97, Issue 1. Р. 104–109. doi: 10.1016/j.biortech.2005.02.027.

44. Lee Y. C., Chang S. P. The biosorption of heavy metals from aqueous solution by spirogyra and cladophora filamentous macroalgae // Bioresource technology. 2011. Vol. 102, Issue 9. Р. 5297–5304. doi: 10.1016/j.biortech.
2010.12.103.

45. Li J., Lin Q., Zhang X. Mechanism of electron transfer in the bioadsorption of hexavalent chromium within Leersia hexandra Swartz granules by X-ray photoelectron spectroscopy // Journal of hazardous materials. 2010. Vol. 182, Issue 1–3. Р. 598–602. doi: 10.1016/ j.jhazmat. 2010.06.074.

46. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance / Lu W. B., Shi J. J., Wang C. H., Chang J. S. // Journal of hazardous materials. 2006. Vol. 134, Issue 1–3. Р. 80–86. doi: 10.1016/j.jhazmat.2005.10.036.

47. Malik D. S., Jain C. K., Anuj K. Y. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review // Applied water science. 2017. Vol. 7, Issue 5. Р. 2113–2136. doi: 10.1007/s13201-016-0401-8.

48. Malkoc E., Nuhoglu Y. Investigations of nickel(II) removal from aqueous solutions using tea factory waste // Journal of hazardous materials. 2005. Vol. 127, Issue 1–3. Р. 120–128. doi: 10.1016/j.jhazmat.2005.06.030.

49. Motaghi M., Ziarati P. Adsorptive removal of cadmium and lead from oryza sativa rice by banana peel as bio-sorbent // Biomedical & Pharmacology Journal. 2016. Vol. 9, Issue 2. Р. 739–749. doi: 10.13005/bpj/998.

50. Role of bioadsorbents in reducing toxic metals / Mthew B., Jaishankar M., George Biju V., Krishnamurthy Nideghatta B. // Journal of toxicology. 2016. Vol. 2016. Р. 1–13. doi: 10.1155/2016/4369604.

51. Mustapha M. U., Halimoon N. Microorganisms and biosorption of heavy metals in the environment: a review paper // J. Microb. Biochem. Technol. 2015. Vol. 7. Р. 253–256, doi: 10.4172/1948–5948.1000219.

52. Cr(VI) sorption by intact and dehydrated candida utilis cells in the presence of other metals / Muter O., Lubinya I., Millers D. et al. // Process biochemistry. 2002. Vol. 38, Issue 1. Р. 123–131. doi: 10.1016/S0032-9592(02)00065-1.

53. Nakbanpote W., Thiravetyan P., Kalambaheti C. Preconcentration of gold by rice husk ash // Minerals engineering. 2000. Vol. 13, Issue 4. Р. 391–400. doi: 10.1016/S0892-6875(00)00021-2.

54. Obi F. O., Ugwuishiwu B. O., Nwakaire J. N. Agricultural waste concept, generation, utilization and management // Nigerian journal of technology (NIJOTECH). 2016. Vol. 35, Issue 4. Р. 957–964. doi: 10.4314/njt.v35i4.34.

55. Balaceanu C. M., Iordache G. Assessment of the air pollution at the industrial stations in metropolitan area of Bucharest // Техногенно-екологічна безпека. 2018. Вип. 3(1/2018). С. 8–15. doi: 10.5281/zenodo.1182485.

56. Özer A., Özer U. Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. Cerevisiae: determination of biosorption heats // Journal of hazardous materials. 2003. Vol. 100, 1–3. Р. 219–229. doi: 10.1016/S0304-3894(03)00109-2.

57. Vambol V., Rashkevich N. Analysis of methods of identification of ecologically danger substances in atmospheric air // Техногенно-екологічна безпека. 2017. Вип. 2. С. 73–78. doi: 10.5281/zenodo.1182894.

58. Patel S. Potential of fruit and vegetable wastes as novel biosorbents: summarizing the recent studies // Reviews in environmental science and bio-technology. 2012. Vol. 11, Issue 4. Р. 365–380.

59. Biosorption of lead and copper by heavy-metal tolerant micrococcus luteus DE2008 / Puyen Z. M., Eduard V., Maldonado J. et al. // Bioresource technology. 2012. Vol. 126. Р. 233–237. doi: 10.1016/j.biortech.2012.09.036.

60. Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin / Quintelas C., Zélia R., Bruna S. et al. // Chemical engineering journal. 2009. Vol. 149, Issue 1–3. Р. 319–324. doi: 10.1016/j.cej.2008.11.025.

61. Rajkumar M., Freitas H. Influence of metal resistant-plant growth-promoting bacteria on the growth of ricinus communis in soil contaminated with heavy metals // Chemosphere. 2008. Vol. 71, Issue 5. Р. 834–842. doi: 10.1016/j.chemosphere.2007.11.038.

62. Review on cadmium removal from aqueous solutions / Rao K. S., Mohapatra M., Anand S., Venkateswarlu P. // International journal of engineering, science and technology. 2010. Vol. 2, Issue 7. Available: https://www.ajol.info/
index.php/ijest/article/view/63747.

63. Reddy N., Yang Y. Biofibers from agricultural byproducts for industrial applications // Trends in biotechnology. 2005. Vol. 23, Issue 1. Р. 22–27. doi: 10.1016/j.tibtech.2004.11.002.

64. Comparative study of biosorption of heavy metals using different types of algae / Romera E., González F., Ballester A. et al. // Bioresource technology. 2007. Vol. 98, Issue 17. Р. 3344–3353. doi: 10.1016/j.biortech.2006.09.026.

65. Role of biosorption in environmental cleanup / Sameera V., Naga Deepthi C. H., Srinu Babu G., Ravi Teja Y. // J. Microbial. Biochem. Technol. 2011. R1:001. doi: 10.4172/1948-5948.R1-001.

66. Shekhar R., Biswas S. Heavy metals removal from food waste water of raipur area using bioadsorbents // International journal of advanced research. 2015. Vol. 4, Issue 2. Р. 72–78. Available: http://www.garph.co.uk/IJAREAS/Feb2015/6.pdf.

67.  Studies on mercury bioremediation by alginate immobilized mercury tolerant bacillus cereus cells / Sinha A., Kamal Kishore P., Kumar Khare S. // International biodeterioration and biodegradation. 2012. Vol. 71. Р. 1–8. doi: 10.1016/j.ibiod.2011.12.014.

68. Equilibrium and kinetic studies on biosorption potential of charophyte biomass to remove heavy metals from synthetic metal solution and municipal wastewater / Sooksawat N., Meetam M., Kruatrachue M. et al. // Bioremediation journal. 2016. Vol. 20, Issue 3. Р. 240–251. doi: 10.1080/10889868.2016.1212810.

69. Environmental and analytical toxicology detoxification of heavy metals from leafy edible vegetables by agricultural waste: apricot pit shell / Tavakoli-Hosseinabady B., Ziarati P., Ballali E., Umachandran K. // Journal of environmental & analytical toxicology. 2018a. Vol. 8, Issue 1. Р. 1–8. doi: 10.4172/2161–0525.1000548.

70. Biosorption of antimony by brown algae S. muticum and A. nodosum / Ungureanu G., Santos S., Boaventura R., Botelho C. // Environmental engineering and management journal. 2015. Vol. 14, Issue 2. Р. 455–463.

71. Uzel A., Ozdemir G. Metal biosorption capacity of the organic solvent tolerant Pseudomonas fluorescens TEM08 // Bioresource technology. 2009. Vol. 100, Issue 2. Р. 542–48. doi: 10.1016/j.biortech.2008.06.032.

72. Biosorption of Cu(II) using free and immobilized biomass of penicillium citrinum / Verma A., Singh A., Bishnoi N. R., Gupta A. // Ecological engineering. 2013. Vol. 61. Р. 486–490. doi: 10.1016/j.ecoleng.2013.10.008.

73. Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies / Vijayaraghavan K., Jegan J., Palanivelu K., Velan M. // Separation and purification technology. 2005. Vol. 44, Issue 1. Р. 53–59. doi: 10.1016
/j.seppur.2004.12.003.

74. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes / Villaescusa I., Núria F., Martínez M. et al. // Water research. 2004. Vol. 38, Issue 4. Р. 992–1002. doi: 10.1016/j.watres.2003.10.040.

75. Identification of phytochelatins in the cadmium-stressed conjugating green alga micrasterias denticulata / Volland S., Schaumlöffel D., Dobritzsch D. et al. // Chemosphere. 2013. Vol. 91, Issue 4. Р. 448–454. doi: 10.1016/j.chemosphere.2012.11.064.

76. Yan G., Viraraghavan T. Heavy metal removal in a biosorption column by immobilized M. rouxii biomass // Bioresource technology. 2001. Vol. 78. Р. 243–249. doi: 10.1080/19443994.2013.800287.

77. Ye H., Zhu Q., Du D. Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk // Bioresource technology. 2010. Vol. 101, Issue 14. Р. 5175–5179. doi: 10.1016/j.biortech.2010.02.027.

78. Yong-Qian F. Biosorption of copper(II) from aqueous solution by mycelial pellets of rhizopus oryzae // African journal of biotechnology. 2012. Vol. 11, Issue 6. Р. 1403–1411. doi: 10.5897/AJB11.2809.

79. Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures / Ziagova M., Dimitriadis G., Aslanidou D. et al. // Bioresource technology. 2007. Vol. 98, Issue 15. Р. 2859–2865. doi: 10.1016/j.biortech.2006.09.043.

80. Ziarati P., Kermanshah A., Moslehishad M. Adsorption heavy metal from contaminated water by modified shell of wild endemic almonds: amygdalus lycioides and amygdalus wendelboi // Biosciences biotechnology research Asia. 2015. Vol. 12, Issue 3. Р. 2451–2457. doi: 10.13005/bbra/1923.

81. Ziarati P., Namvar S., Sawicka B. Heavy metals bio-adsorrption by Hibiscus Sabdariffa L. from contaminated weater // Техногенно-екологічна безпека. 2018. Вип. 4(2/2018). С. 22–32. doi: 10.5281/zenodo.1244568.

82. An overview of the heavy metal contamination in milk and dairy products / Ziarati P., Shirkhan F., Mostafidi M., Tamaskoni Zahedi M. // Acta scientific pharmaceutical sciences. 2018b. Vol. 2, Issue 7. Р. 8–21.

83. Zouboulis A. I., Loukidou M. X., Matis K. A. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils // Process biochemistry. 2004. Vol. 39, Issue 8. Р. 909–916. doi: 10.1016/S0032-9592(03)00200-0.

84. Колесник, В. Є., Павличенко, А. В., Бучавий Ю. В. Уніфікована методика комплексного оцінювання рівня екологічної небезпеки промислових об’єктів та технологій // Техногенно-екологічна безпека. 2018. Вип. 3(1/2018). С. 64–69. doi: 10.5281/zenodo.1182847.