Studying the effect of cement dust on photosynthetic pigments of plants on the example ewekoro cement industry, Nigeria

A. E. Farinmade, A. L. Ogunyebi, K. O. Omoyajowo

 

 

DOI: 10.5281/zenodo.2413063

Received: 6 November 2018

Accepted: 17 December 2018

Published online: 18 December 2018

 

 

ABSTRACT

Most technogenic human activities in quest for industrialization and civilization interfere with ecological safety and biodiversity − all of which are deleterious to the continual existence of life on Earth. This study examined the effect of cement dust from Ewekoro cement industry, Nigeria on the photosynthetic pigments of Ocimum gratissimum, Mangifera indica, Terminalia catappa, Jatropha curcas and Carica papaya. Samples of these endemic plant species were taken at 500 m, 1000 m, 1500 m, 2000 m and 6000 m away from the cement industry. Supernatants taken during Laboratory analysis was used for absorbance readings, using UV-VIS spectrophotometer at 662, 645, 470, 435 and 415 nm wavelength to determine the concentrations of chlorophyll A, chlorophyll B and carotenoids. Results show that chlorophyll A, B, total chlorophyll and carotenoids were reduced in all the plants species exposed to cement dust compared to the control site. The rate of degradation of photosynthetic pigments was high in all the investigated species but significantly higher in Ocimum gratissimum and Mangifera indica. All the plant species except Terminalia catappa showed a decline in carotenoid content. Specifically, Mangifera indica had the highest reduction of chlorophyll (91.03 %), followed by Ocimum gratissimum (77.40 %) among other plant species investigated at 500 m away from the factory site. The lowest reduction in percentage of chlorophyll was observed in Carica papaya. This study infers that cement dust pollution could possibly cause a decline in photosynthetic pigments of leaf extracts and hence, affects plant productivity. Future research should exhaustively examine and perhaps predict the concentration and effect of cement dust on the environment (including both fauna and flora) in 20 years to come via appropriate toxicokinetic models and also they should consider the impact of cement dust on nutritive value of plants. If these prospective studies are conducted, then this will help to choose and apply the organizational measures and technical means to protect the components of nature.

 

Keywords: environmental sustainability; photosynthetic pigments; cement industry.

 

REFERENCES

1. Vambol, S. O., Kondratenko, O. M. (2017). Calculated substantiation of choice of units of monetary equivalents of complex fuel and ecological criteria components. Technogenic and ecological safety, 2, 53–60. doi: 10.5281/zenodo.1182890.

2. Ziarati, P., Namvar, S., Sawicka, B. (2018). Heavy metals bio-adsorrption by Hibiscus Sabdariffa L. from contaminated weater. Technogenic and ecological safety, 4(2/2018), 22–32. doi: 10.5281/zenodo.1244568.

3. Vambol, S., Koloskov, V., Derkach, Yu. (2017). Assessment of environmental condition of territories adjoined to wastes storage sites based on environmental reserve criterion. Technogenic and ecological safety, 2, 67–72.

4. Balaceanu, C. M., Iordache, G. (2018). Assessment of the air pollution at the industrial stations in metropolitan area of Bucharest. Technogenic and ecological safety, 3(1/2018), 8–15. doi: 10.5281/zenodo.1182485.

5. Sarala, T. D., Saravanakumar, R. (2011). Effect of Cement dust on Photosynthetic pigments of selected plant species. Asian Journal of Environmental Science, 6(2), 161–167.

6. Fukuzaki, N., Tamura, R. Hiramo, Y., Mizushima, Y. (1986). Mercury emission from a cement factory and its influence on the environment. Atmosphere Environment, 20(12), 2291–2299. doi: 10.1016/0004-6981(86)90059-4.

7. Akeredolu, F. A., Olaniyi, H. B., Adejumo, J. A. et al. (1994). Determination of elemental composition of TSP from cement industries in Nigeria using EXDRF techniques. Nuclear Instrument and Methods in Physics Research, 353, 542–545.

8. Koperuncholan, M., Ramesh, V. S., Ahmed, J. (2014). Impact of cement industries dust on selective green plants: a case study in Ariyalur industrial zone. International Journal of Pharmaceutical, Chemical and Biological Sciences, 4(1), 152–158.

9. Taylor, G., Davies, W. J. (1990). Root growth of Fagus sylvatica: impact of air quality and drought at a site in southern Britain. New Phytologist, 166, 457–461. doi: 10.1111/j.1469-8137.1990.tb00531.x.

10. Santosh, K. P., Tripathi, B. D. (2008). Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. Journal of Environmental Quality, 37, 865–870. doi: 10.2134/jeq2006.0511.

11. Armbrust, D. V. (1986). Effect of particulates (dust) on cotton growth, photosynthesis, and respiration. Agronomy Journal, 78, 1078–1081. doi: 10.2134/agronj1986.00021962007800060027x.

12. Holt, E. A., Miller, S. W. (2011). Bioindicators: using organisms to measure environmental impacts. Nature Education Knowledge, 2(2), 8.

13. Salami, A. T., Farunbi, A. L., Muoghalu, J. I. (2002). Effect of cement production on vegetation in a part of Southwestern Nigeria. Tanzania Journal of Science, 28(2), 69–82. doi: 10.4314/tjs.v28i2.18355.

14. Oluseyi, T., Olayinka, K., Adeleke, I. (2011). Assessment of ground water pollution in the residential areas of Ewekoro and Shagamu due to cement production. African Journal of Environmental Science and Technology, 5(10), 786–794.

15. Britton, G. (1983). The biochemistry of natural pigments. Cambridge University Press, 133–140. ISBN-13: 978-0521105316.

16. Brown, S. B., Houghton, J. D., Hendry, G. A. (1991). Chlorophyll breakdown. In Chlorophylls. Edited by Scheer, H., CRC Press, Boca Raton, 465–489.

17. Costache, M. A., Campeanu, G., Neata, G. (2012). Studies concerning the extraction of chlorophyll and total carotenoids from vegetables. Romanian Biotechnolo. Letters, 17(5), 7702–7708.

18. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris. Plant physiology, 24(1), 1–15. doi: 10.1104/pp.24.1.1.

19. Lichanthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. doi: 10.1016/0076-6879(87)48036-1.

20. Ronen, R., Galun, M. (1984). Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of chlorophyll degradation. Environmental and Experimental Botany, 24(3), 239–245. doi: 10.1016/0098-8472(84)90004-2.

21. Lichtenthaler, H. R., Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extract in different solvents. Biochemical Society Transactions, 11(5), 591–592. doi: 10.1042/bst011059.

22. Wagh, N. D., Poonam, V., Shukla, S. et al. (2006). Biological monitoring of road-side plants exposed to vehicular pollution in Jalgaon city. Journal of Environmental Biology, 27(2 Suppl), 419–421.

23. Mandre, M., Tuulmets, L. (1997). Pigment changes in Norway spruce induced by dust pollution. Water Air Soil Pollution, 94(3–4), 247–258. doi: 10.1007/BF02406061.

24. Nanos, G. D., Ilias, I. F. (2007). Effects of inert dust on olive (Olea europaea L.) leaf physiological parameters. Environmental Science and Pollution Research, 14(3), 212–214.

25. Ramanathan, R., Jeyakavitha, T., Jeganathan, M. (2006). Impact of cement dust on Azadirachta indica leaves in and around Ariyalu. Journal of Industrial Pollution Control, 22(2), 285–288.

26. Saravana, K. R., Sarala, T. D. (2012). Effect of cement dust deposition on physiological behaviors of some selected plant species. International Journal of Scientific and Technology Research, 1(12), 1–8.

27. Naidoo, G., Chirkoot, D. (2004). The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay, South Africa. Environmental. Pollution, 127, 359–366. doi: 10.1016/j.envpol.
2003.08.018.

28. Health, R. L., Castillo, F. J. (1988). Membrane disturbances in response to air pollutants. In book: Schulte-Hostede S., Darrall, N. M., Blank, L. W., Wellburn, A. R. Air Pollution and Plant Metabolism. Elsevier, London, pp. 53–75.

 

ЛІТЕРАТУРА

1. Vambol S. O., Kondratenko O. M. Calculated substantiation of choice of units of monetary equivalents of complex fuel and ecological criteria components // Technogenic and ecological safety. 2017. Vol. 2. P. 53–60. doi: 10.5281/zenodo.1182890.

2. Ziarati P., Namvar S., Sawicka B. Heavy metals bio-adsorrption by Hibiscus Sabdariffa L. from contaminated weater // Technogenic and ecological safety. 2018. Vol. 4(2/2018). P. 22–32. doi: 10.5281/zenodo.1244568.

3. Vambol S., Koloskov V., Derkach Yu. Assessment of environmental condition of territories adjoined to wastes storage sites based on environmental reserve criterion // Technogenic and ecological safety. 2017. Vol. 2. P. 67–72.

4. Balaceanu C. M., Iordache G. Assessment of the air pollution at the industrial stations in metropolitan area of Bucharest // Technogenic and ecological safety. 2018. Vol. 3(1/2018). P. 8–15. doi: 10.5281/zenodo.1182485.

5. Sarala T. D., Saravanakumar R. Effect of Cement dust on Photosynthetic pigments of selected plant species // Asian Journal of Environmental Science. 2011. Vol. 6, Issue 2. P. 161–167.

6. Mercury emission from a cement factory and its influence on the environment / Fukuzaki N., Tamura R. Hiramo Y., Mizushima Y. // Atmosphere Environment. 1986. Vol. 20, Issue 12. P. 2291–2299. doi: 10.1016/0004-6981(86)90059-4.

7. Determination of elemental composition of TSP from cement industries in Nigeria using EXDRF techniques / Akeredolu F. A., Olaniyi H. B., Adejumo J. A. et al. // Nuclear Instrument and Methods in Physics Research. 1994. Vol. 353. P. 542–545.

8. Koperuncholan M., Ramesh V. S., Ahmed J. Impact of cement industries dust on selective green plants: a case study in Ariyalur industrial zone // International Journal of Pharmaceutical, Chemical and Biological Sciences. 2014. Vol. 4, Issue 1. P. 152–158.

9. Taylor G., Davies W. J. Root growth of Fagus sylvatica: impact of air quality and drought at a site in southern Britain // New Phytologist. 1990. Vol. 166. P. 457–461. doi: 10.1111/j.1469-8137.1990.tb00531.x.

10. Santosh K. P., Tripathi B. D. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution // Journal of Environmental Quality. 2008. Vol. 37. P. 865–870. doi: 10.2134/jeq2006.0511.

11. Armbrust D. V. Effect of particulates (dust) on cotton growth, photosynthesis, and respiration // Agronomy Journal. 1986. Vol. 78. P. 1078–1081. doi: 10.2134/agronj1986.00021962007800060027x.

12. Holt E. A., Miller S. W. Bioindicators: using organisms to measure environmental impacts // Nature Education Knowledge. 2011. Vol. 2, Issue 2. P. 8.

13. Salami A. T., Farunbi A. L., Muoghalu J. I. Effect of cement production on vegetation in a part of Southwestern Nigeria // Tanzania Journal of Science. 2002. Vol. 28, Issue 2. P. 69–82. doi: 10.4314/tjs.v28i2.18355.

14. Oluseyi T., Olayinka K., Adeleke I. Assessment of ground water pollution in the residential areas of Ewekoro and Shagamu due to cement production // African Journal of Environmental Science and Technology. 2011. Vol. 5, Issue 10. P. 786–794.

15. Britton G. The biochemistry of natural pigments // Cambridge University Press. 1983. P. 133–140. ISBN-13: 978-0521105316.

16. Brown S. B., Houghton J. D., Hendry G. A. Chlorophyll breakdown. In Chlorophylls. Edited by Scheer, H., CRC Press, Boca Raton. 1991. P. 465–489.

17. Costache M. A., Campeanu G., Neata G. Studies concerning the extraction of chlorophyll and total carotenoids from vegetables // Romanian Biotechnolo. Letters. 2012. Vol. 17, Issue 5. P. 7702–7708.

18. Arnon D. I. Copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris // Plant physiology. 1949. Vol. 24, Issue 1. P. 1–15. doi: 10.1104/pp.24.1.1.

19. Lichanthaler H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes // Methods in Enzymology. 1987. Vol. 148. P. 350–382. doi: 10.1016/0076-6879(87)48036-1.

20. Ronen R., Galun M. Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of chlorophyll degradation // Environmental and Experimental Botany. 1984. Vol. 24, Issue 3. P. 239–245. doi: 10.1016/0098-8472(84)90004-2.

21. Lichtenthaler H. R., Wellburn A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extract in different solvents // Biochemical Society Transactions. 1983. Vol. 11, Issue 5. P. 591–592. doi: 10.1042/bst011059.

22. Biological monitoring of road-side plants exposed to vehicular pollution in Jalgaon city / Wagh N. D., Poonam V., Shukla S. et al. // Journal of Environmental Biology. 2006. Vol. 27, Issue 2 Suppl. P. 419–421.

23. Mandre M., Tuulmets L. Pigment changes in Norway spruce induced by dust pollution // Water Air Soil Pollution. 1997. Vol. 94, Issue 3–4. P. 247–258. doi: 10.1007/BF02406061.

24. Nanos G. D., Ilias I. F. Effects of inert dust on olive (Olea europaea L.) leaf physiological parameters // Environmental Science and Pollution Research. 2007. Vol. 14, Issue 3. P. 212–214.

25. Ramanathan R., Jeyakavitha T., Jeganathan M. Impact of cement dust on Azadirachta indica leaves in and around Ariyalu // Journal of Industrial Pollution Control. 2006. Vol. 22, Issue 2. P. 285–288.

26. Saravana K. R., Sarala T. D. Effect of cement dust deposition on physiological behaviors of some selected plant species // International Journal of Scientific and Technology Research. 2012. Vol. 1, Issue 12. P. 1–8.

27. Naidoo G., Chirkoot D. The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay, South Africa // Environmental. Pollution. 2004. Vol. 127. P. 359–366. doi: 10.1016/j.envpol.
2003.08.018.

28. Health R. L., Castillo F. J. Membrane disturbances in response to air pollutants. In book: Schulte-Hostede S., Darrall, N. M., Blank, L. W., Wellburn, A. R. Air Pollution and Plant Metabolism. Elsevier, London. 1988. pp. 53–75.