Koziy Ivan

Sumy State University, Sumy, Ukraine


Roi Ihor

Sumy State University, Sumy, Ukraine


Yakhnenko Olena

Sumy State University, Sumy, Ukraine


Ponomarenko Roman

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


Shcherbak Stanislav

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


DOI: 10.52363/2522-1892.2021.2.4


Keywords: fine dust, human health, modeling, regression analysis, correlation



The article discusses the issues of studying the effect of fine dust on human health using mathematical and statistical modeling. The initial data were statistical data on the volume of emissions of suspended particulate matter into the atmosphere and registered cases of diseases of the circulatory system among the population of Ukraine in 2012–2019. To assess the relationship between several factor signs was used method of correlation-regression analysis. The high connection between the actual statistical data and the data of the model calculation indicates the presence a very strong dependence the incidence of the circulatory system of the population on the emissions of fine dust. The obtained results of the study testify to the confirmation of the risk to the health and life of the population. The coefficients of determination make it possible to assert that the emissions of fine dust are one of the main reasons for the development of diseases of the circulatory system in humans. Among the types of dust that enters the atmospheric air from anthropogenic sources of emissions, the most dangerous type of dust for humans is dust containing solid particles ranging in size from 2.5 to 10 microns.



1.   New WHO Global Air Quality Guidelines aim to save millions of lives from air pollution. Geneva: WHO. URL:

2.   WHO Air Quality Guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. (2005). Global update 2005. Summary of risk assessment. Geneva: WHO. URL:; jsessionid=464F804B47551ECF18AC385034A07DB3?sequence=1.

3.   Directive 2008/50 / ЕС of the European Parliament and of Council of 21 May 2008 on ambient air quality and cleaner air for Europe. URL:

4.   Effects on health of suspended particles. Implications for policy development in Eastern Europe, Caucasus and Central Asia. WHO Regional Office for Europe Newsletter. Copenhagen. URL:

5.   Lee K., Park J., Kang M., Kim D., Batmunkh T., Bae M. S., Park K. (2017). Chemical characteristics of aerosols in coastal and urban ambient atmospheres. Aerosol and Air Quality Research, 17, 908–919.

6.   Chekman I. S., Syrovaja A. O., Andreeva S. V., Makarov V. A. (2013). Ajerozoli – dispersnye sistemy: Monografija [Aerosols – dispersed systems: Monograph]. Kharkiv: “Cifrova drukarnja No.1”, 100 p. [in Russian].

7.   Verma S., Prakash D., Ricaud P., Payra S., Attié J. L., Soni M. (2015). A new classification of aerosol sources and types as measured over Jaipur, India. Aerosol and Air Quality Research, 15, 985–993.

8.   Cheng M.-D. (2013). Classification of Volatile Engine Particles. Aerosol and Air Quality Research, 13, 1411–1422.

9.   Rodrıguez S., Cuevas E., Gonzalez Y., Ramos R., Romero P. ., Perez N., Querol X., Alastuey A. (2008). Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5−10 concentrations in a coastal city. Atmospheric Environment, 42, 6523–6534.

10. Belis C. A., Pisoni E., Degraeuwe B., Peduzzi E., Thunis P., Monforti-Ferrario F., Guizzardi D. (2019). Urban pollution in the Danube and Western Balkans regions: the impact of major PM2.5 sources. Environment International, 133, 105–158.

11. Diapouli E., Manousakas M., Vratolis S., Vasilatou V., Maggos Th., Saraga D., Grigoratos Th., Argyropoulos G., Voutsa D., Samara C., Eleftheriadis K. (2017). Evolution of air pollution source contributions over one decade, derived by PM10 and PM2.5 source apportionment in two metropolitan urban areas in Greece. Environment International, 164, 416–430.

12. Lang J. L., Zhou Y., Chen D. S., Xing X. F., Wei L., Wang X. T., Zhao N., Zhang Y. Y., Guo X. R., Han L. H. (2017). Investigating the contribution of shipping emissions to atmospheric PM2.5 using a combined source apportionment approach. Environmental Pollution, 229, 557–566.

13. State Statistics Service of Ukraine. (2021). Vykydy zabrudnjujuchyh rechovyn i parnykovyh gaziv u atmosferne povitrja vid stacionarnyh dzherel zabrudnennja. Statystychni dani za 2012-2019 roky. [Emissions of pollutants and greenhouse gases into the atmosphere from stationary sources of pollution. Statistical data for 2012-2019.]. URL: [in Ukrainian].

14. Public Health Center of the Ministry of Health of Ukraine. (2021). Sercevo-sudynni zahvorjuvannja — golovna prychyna smerti ukrai'nciv. Vysnovky z doslidzhennja Global'nogo tjagarja hvorob u 2019 roci. [Cardiovascular diseases are the main cause of death of Ukrainians. Conclusions from the study of the Global Burden of Disease in 2019.]. URL: [in Ukrainian].

15. State Statistics Service of Ukraine. (2021). Zaklady ohorony zdorov’ja ta zahvorjuvanist' naselennja Ukrai'ny. Statystychni dani za 20122019 roky. [Health care facilities and morbidity of the population of Ukraine. Statistical data for 2012–2019]. URL: [in Ukrainian].

16. Institute of Demography and Social Research named after M.V. Ptuha, National Academy of Sciences of Ukraine. (2021). Baza danyh chysel’nosti naselennja. [Population database]. URL: [in Ukrainian].