THE EFFICIENCY OF THE WATER PURIFICATION PROCESS FROM BACTERIA DEPENDING ON THE GAS NATURE

PDF(ENGLISH)

 

Koval Iryna

Lviv Рolytechnic National University, Lviv, Ukraine

https://orcid.org/0000-0001-8154-4154

 

DOI: 10.52363/2522-1892.2021.2.6

 

Keywords: Bacillus cereus, gas, water purification, bacteria destruction

 

Abstract

A study of the influence of different gas nature on the efficiency of water purification from rod-shaped bacteria of the Bacillus cereus type is presented. The action of oxygen, carbon dioxide and inert argon and helium were used. The investigated water was model microbial water obtained on the basis of deaerated distilled water with the introduction of a pure culture of bacteria in the amount of 7 · 104 CFU/cm3. The total duration of the process was 2 hours at a reaction medium with temperature of 288 ± 1 K. The change in the number of microorganisms from the duration of gas bubbling is shown, depending on its nature. The degrees of destroyed microorganisms were calculated after each sampling of water (Dd), which was taken after each 30 min of the process. Studying the influence of different modes of water treatment, the largest number of destroyed bacterial cells was studied in an atmosphere of carbon dioxide (Dd = 91.0 %), and the smallest - in an atmosphere of oxygen (Dd = 34.73%). A two-stage process of number of microorganisms change was detected in the oxygen atmosphere: an increase in the first stage during 1800 s and a subsequent decrease in the second stage. After CO2 bubbling with a rate of 0.2 cm3/s through an aqueous medium with a volume of 75 cm3, the microbial count decreased by two orders of magnitude, which is apparently due to an increase in the acidity of the test medium. Having found a high efficiency of CO2 on the process of bacterial cells destruction, this gas should be used in water treatment processes, as well as in combination with other reagents or physical methods of water treatment to enhance the destructive effect on micro-objects.

 

References

1. Kurmakova I., Demchenko N., Bondar O., Vorobyova V. (2018). Microbiological Composition of the Biofilm on the Metal Surface of Sewage Constructions. Chemistry & Chemical Technology, 12(4), 519–522. DOI: 10.23939/chcht12.04.519.

2. Ivanchenko L. V., Kozhukhar V. Ya., Brem V. V. (2017). Himija i tehnologija vody : navch. posibnyk [Chemistry and technology of water]. Odessa: Ecology, 208 p. [In Ukrainian]

3. Posthuma L., Zijp M. C., De Zwart D., Van de Meent D., Globevnik L., Koprivsek M., Focks A., Van Gils J., Birk S. (2020). Chemical pollution imposes limitations to the ecological status of European surface waters. Scientific Reports, 10, 14825.

4. Haseena M., Malik M. F., Javed A., Arshad S., Asif N., Zulfiqar Sh., Hanif J. (2017). Water pollution and human health. Environmental Risk Assessment and Remediation, 1(3), 16–19. DOI: 10.4066/2529-8046.100020.

5. Chaudhry F. N., Malik M. F. (2017). Factors Affecting Water Pollution: A Review. Journal of Ecosystem & Ecography, 7(1), 225–230. DOI: 10.4172/2157-7625.1000225.

6. Kravchenko M. V. (2015). Fizyko-himichnyj analiz pryrodnoi' pytnoi' vody riznyh dzherel vodopostachannja [Physico-chemical analysis of natural drinking water from different sources of water supply]. Ecological safety and nature management, 3(19), 52–60. [in Ukrainian].

7. Dirisu G. B., Okonkwo U. C., Okokpujie I. P., Fayomi S. I. (2019). Comparative analysis of the effectiveness of reverse osmosis and ultraviolet radiation of water treatment. Journal of Ecological Engineering, 20(1), 61–75.

8. Wei C., Zhang F., Hu Y., Feng C., Wu H. (2017). Ozonation in water treatment: The generation, basic properties of ozone and its practical application. Reviews in Chemical Engineering, 33(1), 302–315.

9. Potapchenko N. G., Levadnaya T. I., Soboleva N. M. et al. (2007). Kinetika gibeli E.coli pod dejstviem ozona [Kinetics of death of E.coli under the influence of ozone]. Chemistry and technology of water, 29(6), 582–594. [in Russian].

10. Luhovskyi O. F., Gryshko I. A., Bernyk I. M. (2018). Enhancing the Efficiency of Ultrasonic Wastewater Disinfection Technology. Journal of Water Chemistry and Technology, 40, 95–101.

11. Li Y., Shi X., Zhang Zh., Peng Y. (2019). Enhanced coagulation by high-frequency ultrasound in Microcystis aeruginosa-laden water: Strategies and mechanisms. Ultrasonics Sonochemistry, 55, 232–242. DOI: 10.1016/j.ultsonch.2019.01.022.

12. Dai Ch., Xiong F., He R., Zhang W. (2017). Effects of low-intensity ultrasound on the growth, cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae. Ultrasonics Sonochemistry, 36, 191–197. DOI: 10.1016/j.ultsonch.2016.11.035.

13. Iorio M. C., Bevilacqua A., Corbo M. R. (2019). A case study on the use of ultrasound for the inhibition of Escherichia coli O157:H7 and Listeria monocytogenes in almond milk. Ultrasonics Sonochemistry, 52, 477–483.

14. Kong Y., Peng Y., Zhang Zh. (2019). Removal of Microcystis aeruginosa by ultrasound: Inactivation mechanism and release of algal organic matter. Ultrasonics Sonochemistry, 56, 447–457.

15. Mjagchenko O. P. (2010). Osnovy ekologii' [Fundamentals of ecology]. Kyiv: Center for Educational Literature, 312 p. [in Ukrainian].

16. Коval I. Z. (2020). Vplyv kontsentratsiyi aerobnykh bakteriy na protses yikh zhyttyezdatnosti v prysutnosti kysnyu [Influence of Aerobic Bacteria Concentration on the Process of its Survival in the Presence of Oxygen]. Visnyk of V. N. Karazin Kharkiv National University Series “Еcоlogy”, 23, 118–123. DOI: 10.26565/1992-4259-2020-23-10. [in Ukrainian].

17. Ruigrok M. J. R., Tomar J., Frijlink H. W., Melgert B. N., Hinrichs W. L. J., Olinga P. (2019). The effects of oxygen concentration on cell death, anti-oxidant transcription, acute inflammation, and cell proliferation in precision-cut lung slices. Scientific Reports, 9, 16239–16248. DOI: 10.1038/s41598-019-52813-2.

18. Baez A., Shiloach J. (2014). Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds. Microbial Cell Factories, 13, 181–193. DOI: 10.1186/s12934-014-0181-5.

19. Коval I. Z. (2020). Vplyv kysnju ta vuglekyslogo gazu na ochyshhennja vody vid bakterij ta drizhdzhiv v kavitacijnyh umovah [Influence of Oxygen and Carbon Dioxide on Water Purification from Bacteria and Yeast Under Cavitation Conditions]. Visnyk of V. N. Karazin Kharkiv National University Series “Еcоlogy”, 22, 75–81. DOI: 10.26565/1992-4259-2020-22-07. [in Ukrainian].

20. Коval I. Z. (2020). Perevazhajucha mikroflora pryrodnyh ta stichnyh vod L'vivshhyny [Рredominant microflora of natural and wastewaters of Lviv region]. Chemistry, Technology and Application of Substances, 3(2), 121–126. DOI: 10.23939/ctas2020.02.121. [in Ukrainian].

21. Koval I., Starchevskyy V. (2020). Gas nature effect on the destruction of various microorganisms under cavitation action. Chemistry & Chemical Technology, 14(2), 264–270. DOI: 10.23939/chcht14.02.264.