ACTIVITY TO PREVENT EMERGENCY SITUATIONS OF CASCADE TYPE OF SPREADING RELATED TO SOIL LANDSLIDE

PDF(ENGLISH)

 

Rashkevich Nina

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0001-5124-6068

 

Koloskov Volodymyr

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0002-9844-1845

 

Fedyuk Igor

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

 

DOI: 10.52363/2522-1892.2021.2.8

 

Keywords: landfill soils, humidity, temperature, density, landslide

 

Abstract

Landfills for solid waste with liquidation energy-intensive technological equipment, due to emergencies of the cascade type of distribution associated with the landslide of landfills, pose a man-made environmental hazard.

Experimental studies to determine the effect of humidity, density, temperature of landfill soils on the stability of slopes on landslides have shown that with increasing humidity and temperature, the resistance of the array to displacement decreases. The lower the density, the greater the ability to penetrate and saturate with moisture, which creates additional shear load.

According to the results of experimental research, a method of prevention of cascade-type emergencies related to landfill landslides at the landfill with liquid energy-intensive technological equipment has been developed to prevent the consequences of danger from escalating from site to higher levels of distribution. The method consists of measures "before" and "after" the fact of moving the landslide.

 

References

1. Chen W., Sun Z., Han J. (2019). Landslide susceptibility modeling using ıntegrated ensemble weights of evidence with logistic regression and random forest models. Applied Sciences, 9(1), 171.

2. Wang Y. K., Yang J. P., Peng X. Y. (2012). Research of Stratified Compaction Process of Municipal Solid Waste. Advanced Materials Research. 599, 640–646.

3. Zhu B., Wang L., Chen Y. M. (2018). Centrifugal model tests on static and seismic stability of landfills with high water level: in Proceedings of the 9th International Conference on Physical Modelling in Geotechnics. Physical Modelling in Geotechnics, Vol. 2, United Kingdom.

4. Zeng G., Liu L., Xue Q., Wan Y., Ma J., Zhao Y. (2017). Experimental study of the porosity and permeability of municipal solid waste. Environmental Progress and Sustainable Energy, 36, 1694.

5. Gadi V., Singh S., Singhariya M., Garg A., Sredeep S., Ravi K. (2018). Modeling soil-plant-water interaction: Effects of canopy and root parameters on soil suction and stability of green infrastructure. Engineering Computations, 35(3), 1543–1566. DOI: 10.1108/EC-07-2017-0280.

6. Zekkos D. (2013). Experimental evidence of anisotropy in municipal solid waste: in Coupled phenomena in environmental geotechnics (eds M. Manassero, A. Dominijanni, S. Foti and G. Musso). Abingdon, Taylor & Francis, 69–77.

7. Zhao L., Karim M. A. (2018). Use of Geosynthetic materials in solid waste landfill design: A review of geosynthetic related stability issues. Annals of Civil and Environmental Engineering, 2, 006-015. DOI: 10.29328/journal.acee.1001010.

8. Barats N. I. (2008). Mekhanika gruntov: uchebnoje posobije. Omsk: Izd-vo SibADI, 106 p. [in Russian].

9. Kelman I. (2017). Linking disaster risk reduction, climate change, and the sustainable development goals. Disaster Prevention and Management: An International Journal, 3, 254–258. URL: http://www.emeraldinsight.com/toc/dpm/26/3.

10. Baloye D. O., Palamuleni L. G. (2017). Urban critical infrastructure interdependencies in emergency management: Findings from Abeokuta, Nigeria. Disaster Prevention and Management: An International Journal, 2, 162–182. URL: http://www.emeraldinsight.com/toc/dpm/26/2.

11. Dzhamanbayev M. Dzh., Omuraliyev S. B. (2011). Vliyaniye atmosfernykh osadkov razlichnoy intensivnosti na smeshcheniye suglinistykh gruntov opolzneopasnykh sklonov. Izvestiya Kyrgyzskogo gosudarstvennogo tekhnicheskogo universiteta im. I. Razzakova, 23, 46–51. [in Russian].

12. Rashkevich N., Strelec V., Shcherbak S., Yeremenko S. (2021). Development of Tools (Laboratory Facilities) for Researching the Effect of Physical Properties of Landfill Soils on Slope Stability. IOP Conference Series: Materials Science and Engineering, 1164, 012063. DOI: 10.1088/1757-899X/1164/1/012063.

13. Rashkevich N., Shevchenko R., Khmyrov I., Soshinskiy A. (2021). Investigation of the Influence of the Physical Properties of Landfill Soils on the Stability of Slopes in the Contex. Materials Science Forum, 1038, 407–416. DOI: 10.4028/www.scientific.net/msf.1038.407.

14. Rashkevych N. V. (2020). Rozrobka keruyuchoho alhorytmu metodyky poperedzhennya nadzvychaynykh sytuatsiy na polihoni tverdykh pobutovykh vidkhodiv z likvidatsiynym enerhoyemnym tekhnolohichnym ustatkuvannyam. Naukovo-tekhnichnyy zbirnyk «Komunalʹne hospodarstvo mist”, Seriya: tekhnichni nauky ta arkhitektura, 3(156), 188–194. DOI: 10.33042/2522-1809-2020-3-156-188-194. [in Ukrainian].

15. Statut diy u nadzvychaynykh sytuatsiyakh orhaniv upravlinnya ta pidrozdiliv Operatyvno-ryatuvalʹnoyi sluzhby tsyvilʹnoho zakhystu: nakaz MVS Ukrajiny vid 26.04.2018, No. 340. URL: https://zakon.rada.gov.ua/laws/show/z0801-18. [in Ukrainian].