MODEL OF SAFETY MANAGEMENT SYSTEM OF LAND RECULTIVATION OF PLACES OF AMMUNITION DISPOSAL AND DESTRUCTION
Didovets Yurij
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
https://orcid.org/0000-0002-0674-3900
Koloskov Volodymyr
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
https://orcid.org/0000-0002-9844-1845
Koloskova Hanna
National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
https://orcid.org/0000-0001-7118-0115
Jinadu Abdulbaqi
Kwara State University, Malete, Nigeria
https://orcid.org/0000-0003-1316-0057
DOI: 10.52363/2522-1892.2021.2.10
Keywords: safety level, simulation model, land recultivation, ammunition disposal and destruction, danger of explosion
Abstract
An analysis of the impact of explosion hazards on the level of environmental safety of disposal and destruction of ammunition. An analysis of existing technologies of land reclamation that can be used for places of disposal and destruction of ammunition, and identified opportunities and limitations of their use. For the first time, a simulation model of the safety management system for land reclamation and ammunition destruction was created. During the development of the model, it is proposed to consider the parameters of the site of disposal and destruction of ammunition, which determine the parameters of explosion risk, and environmental quality indicators, as responses to the influence of factors of operation of the site of disposal and destruction of ammunition. Safety criteria are determined using a regulatory approach in three areas: current factors, explosion risk parameters and environmental quality indicators. The integrated safety criterion is defined as the highest value of all individual safety criteria.
References
1. Lima D., Bezerra M., Neves E., Moreira F. (2011). Impact of ammunition and military explosives on human health and the environment. Reviews on environmental health. 26(2), 101‑110.
2. Poesen, J. (2017). Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms, 43(1), 64–84.
3. Nechiporuk N. V., Steblina M. A., Polishhuk E. A., Koloskov V. Yu. (2010). Utilizacija neprigodnyh dlja dal'nejshego ispol'zovanija aviacionnyh boepripasov [Disposal of aircraft munitions unsuitable for further use]. Open Information and Computer Integrated Technologies, 48, 227–233. [in Russian].
4. Spain J.C. (1995). Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 49, 523–555.
5. Bulloch G., Green K., Sainsbury M. G., Brockwell J. S., Steeds J. E., Slade N. J. (2001). Land Contamination: Technical Guidance on Special Sites: Explosives Manufacturing & Processing Sites. R&D Technical Report P5-042/TR/03. Environment Agency, 68 p.
6. Guilbaud M. (2020). The Environmental Impact of an Explosion. White Paper. Geode, 43 p.
7. Zwijnenburg W., te Pas K. (2015). Amidst the debris... A desktop study on the environmental and public health impact of Syria’s conflict. Colophon, 84 p.
8. Environmental Impact of Munition and Propellant Disposal. Final Report of Task Group AVT-115. (2010). Research and Technology Organisation / North Atlantic Treaty Organisation, 86 p.
9. Hathaway J. E., Rishel J. P., Walsh M. E., Walsh M. R., Taylor S. (2015). Explosive particle soil surface dispersion model for detonated military munitions. // Environmental Monitoring and Assessment, 187(415), 4652.
10. Broomandi P., Guney M., Kim J. R., Karaca F. (2020). Soil Contamination in Areas Impacted by Military Activities: A Critical Review. Sustainability, 12, 9002.
11. 2021 BATA Explosions – Equatorial Guinea. Multi-Cluster/Sector Initial Rapid Assessment (MIRA). (2021). OCHA, 14 p.
12. Gorecki S., Nesslany F., Hube D., Mullot J., Vasseur P., Marchioni E., Camel V., Noël L., B. B. Le, Guérin T., Feidt C., Archer X., Mahe A., Rivière G. (2017). Human health risks related to the consumption of foodstuffs of plant and animal origin produced on a site polluted by chemical munitions of the First World War. The Science of the Total Environment, 599–600, 314–323.
13. Pichtel J. (2016). Distribution and Fate of Military Explosives and Propellants in Soil: A Review. Applied and Environmental Soil Science, 2012, 617236.
14. Olson K., Tharp M. (2020). How did the Passaic River, a Superfund site near Newark, New Jersey, become an Agent Orange dioxin TCDD hotspot? Journal of Soil and Water Conservation, 75(2), 33A–37A.
15. Ryu H., Han J., Jung J. W., Bae B., Nam K. (2007). Human health risk assessment of explosives and heavy metals at a military gunnery range. Environmental Geochemistry and Health, 29(4), 259–269.
16. Vasarevicius S., Greičiūte K. (2004). Investigation of soil pollution with heavy metals in Lithuanian military grounds // Journal of Environmental Engineering and Landscape Management, 12(4), 132‑137.
17. Idzelis R. L., Greičiūte K., Paliulis D. (2006). Investigation and evaluation of surface water pollution with heavy metals and oil products in Kairiai Military Ground territory. Journal of Environmental Engineering and Landscape Management, 14(4), 183‑190.
18. Lewis T. A., Newcombe D. A., Crawford R. L. (2004). Bioremediation of soils contaminated with explosives. Journal of Environmental Management, 70(4), 291–307.
19. Hawari J., Beaudet S., Halasz A., Thiboutot S., Ampleman G. (2000). Microbial degradation of explosives: biotransformation versus mineralization. Applied Microbiology and Biotechnology, 54(5), 605‑618.
20. Rieger P.; Knackmuss H. J. (1995). Basic Knowledge and Perspectives on Biodegradation of 2,4,6-Trinitrotoluene and Related Nitroaromatic Compounds in Contaminated Soil, in Biodegradation of nitroaromatic compounds; Spain, J. C., Ed.; Plenum Publishing Co.: New York, 1–18
21. Klausmeier R. E., Osmon J. L., Walls D. R. (1973). The effect of trinitrotoluene on microorganisms. Developments in Industrial Microbiology, 15, 309–317.
22. Kurinenko B. M., Yakovleva G. Y., Denivarova N. A., Abreimova Y. V. (2003). Specific toxic effects of 2,4,6-trinitrotoluene on Bacillus subtilis SK1. Applied Biochemistry and Microbiology, 39(3), 275–278.
23. Won W. D., DiSalvo L. H., Ng J. (1976). Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Applied and Environmental Microbiology, 31(4), 576–580.
24. Comfort S. D., Shea P. J., Hundal L. S., Li Z., Woodbury B. L., Martin J. L., Powers W. L. (1995). TNT transport and fate in contaminated soil. Journal of Environmental Quality, 24(6), 1174–1182.
25. Certini G., Scalenghe R., Woods W. I. (2013). The impact of warfare on the soil environment. Earth-Science Reviews, 127, 1–15.
26. Fayiga A. O. (2019). Remediation of inorganic and organic contaminants in military ranges. Environmental Chemistry, 16(2), 81–91.
27. Ndibe T., Benjamin B., Eugene W., Usman J. (2018). A Review on Biodegradation and Biotransformation of Explosive Chemicals. European Journal of Engineering and Technology Research, 3(11), 58–65.
28. Kanwar V. S., Sharma A., Srivastav A. L., Rani L. (2020). Phytoremediation of toxic metals present in soil and water environment: a critical review. Environmental Science and Pollution Research, 27, 44835–44860.
29. Gao J.-j., Peng R.-h., Zhu B., Tian Y.-s., Xu J., Wang B., Fu X.-y., Han H.-j., Wang L.-j., Zhang F.-j., Zhang W.-h., Deng Y.-d., Wan Y., Li Z.-J., Yao Q.-H. (2021). Enhanced phytoremediation of TNT and cobalt co-contaminated soil by AfSSB transformed plant. Ecotoxicology and Environmental Safety, 220, 112407.
30. Doyle R. C., Isbister J. D., Anspach G. L., Kitchensp J. F. (1986). Composting Explosives/Organics Contaminated Soils. Atlantic Research Corporation, 198 p.
31. Koloskov V. Yu. Modeli ta metody prognozuvannja rivnja bezpeky poligonu zi zberigannja tverdyh pobutovyh vidhodiv [Models and methods for predicting the level of safety for the landfill from securing solid side-by-side inputs]. Visnyk NTU “KhPI”. Serija: Mehaniko-tehnologichni systemy ta kompleksy, 4(1176), 142–146. [in Ukrainian].