Bezsonnyi Vitalii

Simon Kuznets Kharkiv National University of Economics, Kharkiv, Ukraine


Ponomarenko Roman

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


Tretyakov Oleg

Ipris-Profil Ltd., Kharkiv, Ukraine


Kalda Galina

Rzeszow University of Technology, Rzeszow, Poland


Asotskyi Vitalii

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


DOI: 10.52363/2522-1892.2021.2.12


Keywords: ecological safety of surface waters, surface water monitoring, integrated water quality indicator, complex index of water quality of dissolved oxygen, biochemical oxygen consumption



All source information for the tasks of effective management of water resources is based on the results of observations and measurements, ie on the results of monitoring. Despite the apparent advantages of assessing surface water quality using comprehensive indicators, the creation of about 30 of the most well-known comprehensive indicators of water quality since the first attempts in this field of hydrochemistry and to date, the only comprehensive indicator that combines assessment of natural masses of different water bodies objects does not exist. It is proposed to monitor one or two indicators in certain sections of the river, which characterize the ecological state comprehensively, and in case of emergencies and non-stationary situations – to conduct a complete chemical analysis of water. For this purpose it is most expedient to use oxygen indicators - dissolved oxygen and biochemical oxygen consumption.



1. Ponomarenko R., Plyatsuk L., Hurets L., Polkovnychenko D., Grigorenko N., Sherstiuk M., Miakaiev O. (2020). Determining the effect of anthropogenic loading on the environmental state of a surface source of water supply. Eastern-European Journal of Enterprise Technologies, 3(10-105), 54–62. DOI: 10.15587/1729-4061.2020.206125.

2. Ahmad Z., Khalid R., Muhammad A. (2018). Spatially distributed water quality monitoring using floating sensors. Proceedings: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 8591395, 2833–2838. DOI: 10.1109/IECON.2018.8591395.

3. Ratslav V. V. (2020). Monitoring of biota and bottom sediments of the Seversky Dinets river basin. Ecological sciences, 2(29–2), 40–46. DOI

4. Hutchins M. G., Qu Y., Charlton M. B. (2021). Successful modelling of river dissolved oxygen dynamics requires knowledge of stream channel environments. Journal of Hydrology, 603, 126991. DOI: 10.1016/j.jhydrol.2021.126991.

5. Zhang X., Chen L., Yu Y., Shen Z. (2021). Water quality variability affected by landscape patterns and the associated temporal observation scales in the rapidly urbanizing watershed. Journal of Environmental Management, 298, 113523. DOI: 10.1016/j.jenvman.2021.113523.

6. Duc N. H., Avtar R., Kumar P., Lan P. P.(2021). Scenario-based numerical simulation to predict future water quality for developing robust water management plan: a case study from the Hau River, Vietnam. Mitigation and Adaptation Strategies for Global Change, 26(7), 33. DOI: 10.1007/s11027-021-09969-y.

7. Tay C. K. (2021). Integrating water quality indices and multivariate statistical techniques for water pollution assessment of the Volta Lake, Ghana. Sustainable Water Resources Management, 7(5), 71. DOI: 10.1007/s40899-021-00552-6.

8. Bell V. A., Naden P. S., Tipping E., Davies H. N., Carnell E., Davies J. A. C., Dore A. J., Dragosits U., Lapworth D. J., Muhammed S. E., Quinton J. N., Stuart M., Tomlinson S., Wang L., Whitmore A. P., Wu L. (2021). Long term simulations of macronutrients (C, N and P) in UK freshwaters. Science of the Total Environment, 776, 145813. DOI: 10.1016/j.scitotenv.2021.145813.

9. Allafta H., Opp C. (2020) Spatio-temporal variability and pollution sources identification of the surface sediments of Shatt Al-Arab River, Southern Iraq. Scientific Reports, 10(1), 6979. DOI: 10.1038/s41598-020-63893-w.

10. Luijendijk E., Gleeson T., Moosdorf N. (2020). Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nature Communications, 11(1), 1260. DOI: 10.1038/s41467-020-15064-8.

11. Han Q., Tong R., Sun W., Zhao Y., Yu J., Wang G., Shrestha S., Jin Y. (2020). Anthropogenic influences on the water quality of the Baiyangdian Lake in North China over the last decade. Science of the Total Environment, 701, 134929. DOI: 10.1016/j.scitotenv.2019.134929.

12. Wang S., Tian S., Zhang P., Ye J., Tao X., Li F., Zhou Z., Nabi M. (2019) Enhancement of biological oxygen demand detection with a microbial fuel cell using potassium permanganate as cathodic electron acceptor. Journal of Environmental Management, 252, 109682. DOI: 10.1016/j.jenvman.2019.109682.

13. Rao Q., Qiu Y., Li J. (2019). Water Quality Assessment and Variation Trends Analysis of the Min River Sea-Entry Section, China. Water, Air, and Soil Pollution, 230(12), 272. DOI: 10.1007/s11270-019-4328-1.

14. Nakamura C. H., Salla M. R., Oliveira de Jesus J. A., Ribeiro da Silva G. H. (2019). Calibration of mathematical water quality modeling in a river basin under critical conditions. Water Environment Research, 91(12), 1678–1691. DOI: 10.1002/wer.1175.

15. Dunca A.-M. (2018). Water pollution and water quality assessment of major transboundary rivers from Banat (Romania). Journal of Chemistry, 9073763. DOI: 10.1155/2018/9073763.

16. Bezsonnyi V. (2019). Monitoring of surface resources of water supply in the conditions of implementation of water framework direktives of EU. Municipal Economy of Cities, 3(149), 69–76. URL

17. Shtepa V. M., Plyatsuk L. D. (2019). The use of the method of the dominant dynamic pollutant to manage the environmental safety of industrial wastewater treatment systems. Energy and Automation, 6, 214–226. DOI 10.31548/energiya2019.06.214.

18. Bezsonnyi V., Tretyakov O., Khalmuradov B., Ponomarenko R. (2017) Examining the dynamics and modeling of oxygen regime of chervonooskil water reservoir. Eastern-European Journal of Enterprise Technologies, 5(10-89), 32–38. DOI: 10.15587/1729-4061.2017.109477