Koziy Ivan

Sumy State University, Sumy, Ukraine


DOI: 10.52363/2522-1892.2022.1.7


Keywords: environmental protection technologies, pollutants, dust and gas cleaning equipment



The article considers the optimal choice of effective dust and gas cleaning equipment taking into account the actual environmental conditions and characteristics of pollutants. Deposition of pollutants from gaseous emissions leads to soil pollution and migration of heavy metals into groundwater and surface water, so the question of optimal choice of effective environmental equipment is relevant to the study. The problem of reasonable selection of optimal dust and gas cleaning equipment should consider the parameters of pollutants and environmental conditions of the cleaning process, which can be done using a mathematical apparatus. The article uses the algebra of expressions to formulate the gradualness and imitation of the algorithmic program for calculating the optimal dust and gas cleaning equipment based on the parameters of pollutants and environmental conditions. Graph analysis allows a quick algorithmic explanation of the optimal oriented choice of certain types of treatment equipment. Based on the study and visualizations of the hierarchical structure of the scheme of selecting dust and gas cleaning equipment, it is possible to conclude a convenient assessment of the effectiveness of the cleaning process.



1.   George, J., Masto, R. E., Ram, L. C., Das, T. B., Rout, T. K., & Mohan, M. (2015). Human exposure risks for metals in soil near a coal-fired power-generating plant. Archives of environmental contamination and toxicology, 68(3), 451–461. DOI: 10.1007/s00244-014-0111-x.

2.   Liao, M., Lan, K, & Yao, Y. (2022). Sustainability implications of artificial intelligence in the chemical industry: A conceptual framework. Journal of Industrial Ecology, 26(1), 164–182. DOI: 10.1111/jiec.13214.

3.   Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial intelligence in sustainable energy industry: Status quo, challenges and opportunities. Journal of Cleaner Production, 289, 125834. DOI: 10.1016/j.jclepro.2021.125834.

4.   Popescu, L. G., Popa, R. G., & Schiopu, E. C. (2018). The thermal power plant impact on the environment and some possibilities of reduce it by ash and slag recycling and reuse. Scientific Papers, Series E – Land Reclamation, Earth Observation and Surveying Environmental Engineering, 7, 10–15.

5.   Gang, X., Yong-ping, Y., Shi-yuan, L., Le, L., & Xiaona, S. (2011). Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process. Energy Policy, 39(5), 2343–2351. DOI: 10.1016/j.enpol.2011.01.054.

6.   Zhu, C., Tian, H. Z., Cheng, K., Liu, K., Wang, K., Hua, S., Gao, J., & Zhou, J. (2016). Potentials of whole process control of heavy metals emissions from coal-fired power plants in China. Journal of Cleaner Production, 114, 343–351. DOI: 10.1016/j.jclepro.2015.05.008.

7.   Singh, R. K., Gupta, N. C., & Guha, B. K. (2012). The leaching characteristics of trace elements in coal fly ash and an ash disposal system of thermal power plants. Energy Sources. Part A: Recovery, Utilization and Environmental, 34(7), 602–608. DOI: 10.1080/15567036.2011.621928

8.   Hoang, V. N., & Alauddin, M. (2012). Input-orientated data envelopment analysis framework for measuring and decomposing economic, environmental and ecological efficiency: An application to OECD agriculture. Environmental and Resource Economics, 51(3), 431–452. DOI: 10.1007/s10640-011-9506-6.

9.   Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied Thermal Engineering, 29(2–3), 324–328. DOI: 10.1016/j.applthermaleng.2008.02.029.

10.Kozii, I. S., Plyatsuk, L. D., & Koval, V. V. (2022). Algorithm for selection equipment to reduce the technogenic effect on the environment. Problemele Energeticii Regionale, 1(53), 59–67. DOI: 10.52254/1857-0070.2022.1-53.05.

11.Bacciu, D., & Bruno, A. (2020). Deep tree transductions – A short survey. Recent Advances in Big Data and Deep Learning. INNSBDDL 2019. Proceedings of the International Neural Networks Society, 1, Springer, Cham, 236–245. DOI: 10.1007/978-3-030-16841-4_25.

12.Wu, D., Poh Sheng, J. Y., Su-En, G. T., Chevrier, M., Jie Hua, J. L., Kiat Hon, T. L., & Chen, J. (2019). Comparison between UMAP and t-SNE for multiplex-immunofluorescence derived single-cell data from tissue sections. bioRxiv, 549659, 20. DOI: 10.1101/549659.

13.Mokrozub, V. G., Farakhshina, I. V., Al-Magsusii, H. F. H., & MerkushovaK. A. (2020). Selection of equipment types when designing multipurpose chemical plants. Chemical and Petroleum Engineering, 56, 230–236. DOI: 10.1007/s10556-020-00763-2.

14.Borisenko, A. V., & Karpushkin, S. V. (2017). Hierarchy of processing equipment configuration design problems for multiproduct chemical plants. Journal of Computer and Systems Sciences International, 53(3), 410–419. DOI: 10.1134/S1064230714030046.

15.Mokeddem, D., & Khellaf, A. (2009). Optimal solutions of multiproduct batch chemical process using multiobjective genetic algorithm with expert decision system. Journal of Automated Methods and Management in Chemistry, 927426. DOI: 10.1155/2009/927426.

16.Lee, J. H., Shin, J., & Realff, M. J. (2018). Machine learning: Overview of the recent progresses and implications for the process systems engineering field. Computers and Chemical Engineering, 114, 111–121. DOI: 10.1016/j.compchemeng.2017.10.008.

17.Garcia, D. J., Mozaffar, M., Ren, H., Correa, J. E., Ehmann, K., Cao, J., & You, F. (2018). Sustainable manufacturing with cyber-physical discrete manufacturing networks: Overview and modeling framework. Journal of Manufacturing Science and Engineering, 141(2), 021013. DOI: 10.1115/1.4041833.

18.Choy, K. L., Ho, G. T. S., Lee, C. K. H., Lam, H. Y., Cheng, S. W. Y., Siu, P. K. Y., Pang, G. K. H., Tang, V., Lee, J. C. H., & Tsang, Y. P. (2016). A recursive operations strategy model for managing sustainable chemical product development and production. International Journal of Production Economics, 181(B), 262–272. DOI: 10.1016/j.ijpe.2016.07.011.

KoziiI., Zhylenko, T., TrunovaI., BataltsevY., & MakarenkoN. (2021). Kryterii vyboru pryrodozahysnogo obladnannja dlja ochyshhennja promyslovyh vykydiv pidpryjemstv [Criteria for choosing environmental equipment for cleaning industrial emissions of enterprises]. Ecological Sciences, 6(39), 12–18. DOI: 10.32846/2306-9716/ [in Ukrainian].