Krasovskyi Serhii

Dnipro University of Technology, Dnipro, Ukraine


Kovrov Oleksandr

Dnipro University of Technology, Dnipro, Ukraine


DOI: 10.52363/2522-1892.2022.2.4


Keywords: coal dumps, heavy metals, maximum permissible concentration, phytoremediation, Triticum aestivum



The Ukrainian energy and fuel sector is highly dependent on mineral extraction. Hard coal accounts for 25-30% of mineral production in Ukraine. All processes, from coal mining to its use for energy, have a negative impact on the environment. One of these impacts is the accumulation of waste rock at an industrial facility, known as a coal dump. These dumps have a negative impact on all spheres of the environment. Coal dumps located in Western Donbas are characterized by a low pH level, a low level of specific electrical conductivity of the soil, a low level of nutrients and a high concentration of heavy metals. Among the main dangerous toxic elements are Pb and Cd, the concentration of which exceeds more than 2 times the maximum permissible concentration. According to the results of the study, it was established that Triticum aestivum has shown itself as a phytoremediator plant resistant to heavy metals such as Pb and Cd, which makes it available to further use for planting contaminated areas of coal dumps.



1.    BP Global Group. (2012). BP statistical review of world energy, 48 p. URL: globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2012.pdf.

2.    Sun, H., Li, M., & Li, D. (2011). The vegetation classification in coal mine overburden dump using canopy spectral reflectance. Computers and Electronics in Agriculture, 75, 176–180.

3.    Cao, X. (2007). Regulating mine land reclamation in developing countries: the case of China. Land Use Policy, 24, 472–483.

4.    Zhengfu, B, Hilary, I, John, D, Frank, O, & Sue, S. (2010). Environmental issues from coal mining and their solutions. Mining Science and Technology, 20, 0215–0223.

5.    Salt, D. E., Blaylock, M., Kumar, P. B. A. N., Dushenkov, V., Enseley, D. D., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for removal of toxic metals from the environment using plants. Biotechnology, 13, 468–474.

6.    Krasovskyi, S. A., Kovrov, O. O., & Klimkina, I. I. (2021). Fitoremediacija vugil'nyh vidvaliv Zahidnogo Donbasu [Phytoremediation of coal dumps of Western Donbass]. Zbirnyk naukovyh prac' NGU, 65, 170–178. [in Ukrainian].

7.    Krasovskyi, S. A., Kovrov, O. O., & Klimkina, I. I. (2021). Vyznachennja fizyko-himichnyh parametriv vugilnogo vidvalu DTEK ShU “Heroiv kosmosu” [Determination of physico-chemical characteristics of the coal dump “Heroiv Kosmosy”]. Ecological Sciences, 6(39), 137140. DOI: 10.32846/2306-9716/ [in Ukrainian].

8.    Petr, B., Vojtech, A., Radka, O., Josef, Z., Ladislav, H., & Rene, K. (2009). Uncommon Heavy Metals, Metalloids and Their Plant Toxicity: A Review, Organic Farming, Pest Control and Remediation. Environmental Chemistry Letters, 6(4), 189–213.

9.    DixitR., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., Singh, B. P., Rai, J. P., Sharma, P. K., Lade, H., & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes, Sustainability, 7, 21892212. DOI: 10.3390/su7022189.

10.   Sengupta, M. (1993). Environmental impacts of mining – monitoring, restoration and control. London: Lewis. 1993. P. 1–31.

11.   Pandey, V. C., & Singh, K. (2011). Is Vigna radiata suitable for the revegetation of fly ash landfills? Ecological Engineering, 37, 2105–2106.

12.   Nath, S. (2009). Ecosystem approach for mined land rehabilitation and present rehabilitation scenario in Jharkhand coal mines. In: Chaubey, O. P., Bahadur, V., & Shukla, P. K. (eds). Sustainable rehabilitation of degraded ecosystems. Jaipur: Aavishkar Publishers Distributors, 2009, 46–66.

13.   Pandey, V. C., Pandey, D. N., & Singh, N. (2015). Sustainable phytoremediation based on naturally colonizing and economically valuable plants. Journal of Cleaner Production, 86, 37–39.

14.   Chirakkara R., & Reddy K. (2015). Plant species identification for phytoremediation of mixed contaminated soils. Journal of Hazardous, Toxic and Radioactive Waste, 19(4). DOI: 10.1061/(ASCE)HZ.2153-5515.0000282.

15.   Pandey, V. C., Bajpai, O., & Singh, N. (2016). Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews, 54, 58–73.

16.   Höflich, G., & Metz, R. (1997). Interactions of plant-microorganism associations in heavy metal containing soils from sewage farms. Bodenkultur, 48, 239–247.

17.   Kuffner, M, Puschenreiter, M, Wieshammer, G, Gorfer, M, & Sessitsch, A. (2008). Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil, 304, 35–44.

18.   Jiang, C. Y., Sheng, X. F., Qian, M., & Wang, Q. Y. (2008). Isolation and characterization of heavy metal resistant Burkholderia sp. from heavy metal contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere, 72, 157–164.

19.   Yang, X., & Gao, L. (2001). A study on re-vegetation in mining wasteland of Dexing copper mine, China. Acta Ecologica Sinica, 21(11), 1932–1940.

20.   Lavoie, C., Marcoux, K., Saint-Louis, A., & Price, J. S. (2005). The dynamics of a cotton-grass (Eriophorum vaginatum L.) cover expansion in a vacuum-mined peatland, southern Quebec. Canada.Wetlands, 25, 64–75.

21.   Pro zatverdzhennja Gigijenichnyh reglamentiv dopustymogo vmistu himichnyh rechovyn u g'runti [On approval of Hygienic regulations for the permissible content of chemicals in the soil], 1000 Order of the Ministry of Health of Ukraine (2020). [in Ukrainian].