ASSESSMENT OF TECHNOGENIC AND ECOLOGICAL SAFETY OF A WATER STREAM ACCORDING TO RISK INDICATORS UNDER THE CONDITIONS OF MILITARY DANGER

PDF(UKRAINIAN)

 

Bezsonnyi Vitalii

Simon Kuznets Kharkiv National University of Economics, Kharkiv, Ukraine

https://orcid.org/0000-0001-8089-7724

 

Plyatsuk Leonid

Sumy State University, Sumy, Ukraine

https://orcid.org/0000-0003-0095-5846

 

Ponomarenko Roman

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0002-6300-3108

 

Tretyakov Oleg

National Aviation University, Kyiv, Ukraine

https://orcid.org/0000-0001-9868-0486

 

DOI: 10.52363/2522-1892.2022.2.9

 

Keywords: ecological safety, surface waters, ecological risk, water quality, water quality indicators

 

Abstract

Assessment of the ecological risk of deterioration of the state of water bodies was carried out in stages. A list of pollutants that exceed the value of the environmental standard is determined. It is believed that these substances contribute to the development of degradation processes in the water ecosystem. At the second stage, the risk is determined in relation to indicators characterized by the olfactory-reflective effect of exposure (smell, taste, color) and other indicators that shape water quality. At the next stage, the total ecological risk of deterioration of the condition of water bodies is determined. The influence of chemicals on the organoleptic properties of water can manifest itself in a change in its smell, taste and color, as well as in the formation of a surface film or foam. The criterion for the development of indicator models characterized by the olfactory-reflex effect of influence is the visual-organoleptic principle of assessment. The theoretical basis for finding the threshold concentrations of influence on the smell and taste of water is the psychophysical law of Weber-Fechner, according to which the intensity of the sensation is proportional to the logarithm of the concentration of the substance. The assessment of the overall risk of organoleptic effects was carried out by selecting its maximum value from the entire group of values characteristic of each of the substances. The risk assessment is the basis for evaluating the environmental impact as a function of stress exposure in the river basin. As a result of the risk assessment of the results of the possible impact of military actions on the utility facility, it was established that, in addition to organoleptic indicators, the nitrogen group comes to the fore in the list of priority substances in the event of an emergency impact (values are an order of magnitude higher than under normal conditions). It can cause negative health effects, causing mutagenic and carcinogenic effects, and also accelerates the eutrophication of the water body.

 

References

1. Bezsonnyi, V., Ponomarenko, R., Tretyakov, O., Burmenko, O., Borodych, P., & Karpets, K. (2021). Environmental risk assessment due to the impact of communal facilities on surface waters. Problems of Emergency Situations, 2(34), 58–76. DOI: 10.52363/2524-0226-2021-34-5.

2. Green, O. O., Garmestani, A. S., van Rijswick, H. F. M. W., & Keessen, A. M. (2013). EU water governance: Striking the right balance between regulatory flexibility and enforcement? Ecology and Society, 18 (2), 10. DOI: 10.5751/ES-05357-180210.

3. Kuzmin, S. V., Gurvich, V. B., Dikonskaya, O. V., Nikonov, B. I., Malykh, O. L., Yarushin, S. V., Kuzmina, E. A., Kochneva, N. I., & Kornilkov, A. S. (2017). Socio-hygienic monitoring and information analysis systems supporting the health risk assessment and management and a risk-focused model of supervisory activities in the sphere of securing sanitary and epidemiologic public welfare. Gigiena i Sanitariya, 96(12), 11301136. DOI: 10.18821/0016-9900-2017-96-12-1130-1136.

4. Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 327. DOI: 10.1016/j.watres.2014.08.053.

5. Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., van de Zee, S. E. A. T. M., & Ritsema, C. J. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 5765. DOI: 10.1016/j.iswcr.2015.03.002.

6. Beyer, J., Petersen, K., Song, Y., Ruus, A., Grung, M., Bakke, T., & Tollefsen, K. E. (2014). Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Marine Environmental Research, 96, 8191. DOI: 10.1016/j.marenvres.2013.10.008.

7. Mastroianni, N., Bleda, M. J., López de Alda, M., & Barceló, D. (2016). Occurrence of drugs of abuse in surface water from four Spanish river basins: Spatial and temporal variations and environmental risk assessment. Journal of Hazardous Materials, 316, 134142. DOI: 10.1016/j.jhazmat.2016.05.025.

8. Zhou, S., Di Paolo, C., Wu, X., Shao, Y., Seiler, T.-B., & Hollert, H. (2019). Optimization of screening-level risk assessment and priority selection of emerging pollutants – The case of pharmaceuticals in European surface waters. Environment International, 128, 110. DOI: 10.1016/j.envint.2019.04.034.

9. Osorio, V., Larrañaga, A., Aceña, J., Pérez, S., & Barceló, D. (2016) Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Science of the Total Environment, 540, 267277. DOI: 10.1016/j.scitotenv.2015.06.143.

10. Silva, E., Daam, M. A., & Cerejeira, M. J. (2015). Aquatic risk assessment of priority and other river basin specific pesticides in surface waters of Mediterranean river basins. Chemosphere, 135, 394–402. DOI: 10.1016/j.chemosphere.2015.05.013.

11. Tsaboula, A., Papadakis, E.-N., Vryzas, Z., Kotopoulou, A., Kintzikoglou, K., & Papadopoulou-Mourkidou, E. (2016). Environmental and human risk hierarchy of pesticides: A prioritization method, based on monitoring, hazard assessment and environmental fate. Environment International, 91, 7893. DOI: 10.1016/j.envint.2016.02.008.

12. Haregeweyn, N., Tsunekawa, A., Poesen, J., Tsubo, M., Meshesha, D. T., Fenta, A. A., Nyssen, J., & Adgo, E. (2017). Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Science of the Total Environment, 574, 95108. DOI: 10.1016/j.scitotenv.2016.09.019.

13. Ccanccapa, A., Masiá, A., Navarro-Ortega, A., Picó, Y., & Barceló, D. (2016). Pesticides in the Ebro River basin: Occurrence and risk assessment. Environmental Pollution, 211, 414424. DOI: 10.1016/j.envpol.2015.12.059.

14. Brooks, B. W., Lazorchak, J. M., Howard, M. D. A., Johnson, M.-V. V., Morton, S. L., Perkins, D. A. K., Reavie, E. D., Scott, G. I., Smith, S. A., & Steevens, J. A. (2016). Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environmental Toxicology and Chemistry, 35(1), 613. DOI: 10.1002/etc.3220.

15. Rasmussen, J. J., Wiberg-Larsen, P., Baattrup-Pedersen, A., Cedergreen, N., McKnight, U. S., Kreuger, J., Jacobsen, D., Kristensen, E. A., & Friberg, N. (2015).  The legacy of pesticide pollution: An overlooked factor in current risk assessments of freshwater systems. Water Research, 84, 2532. DOI: 10.1016/j.watres.2015.07.021.

16. Wood, T. J., & Goulson, D. (2017) The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environmental Science and Pollution Research, 24(21), 1728517325. DOI: 10.1007/s11356-017-9240-x.

17. Munz, N. A., Burdon, F. J., de Zwart, D., Junghans, M., Melo, L., Reyes, M., Schönenberger, U., Singer, H. P., Spycher, B., Hollender, J., & Stamm, C. (2017). Pesticides drive risk of micropollutants in wastewater-impacted streams during low flow conditions. Water Research, 110, 366377. DOI: 10.1016/j.watres.2016.11.001.

18. Liu, M., Feng, J., Kang, B., Chen, Y., Liu, Q., & Sun, J. (2016). Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in Surface Sediments from the Upper Reach of Huaihe River. Polycyclic Aromatic Compounds, 36(5), 817833. DOI: 10.1080/10406638.2015.1061026.

19. Feng, J., Hu, P., Li, X., Liu, S., & Sun, J. (2016). Ecological and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Water from Middle and Lower Reaches of the Yellow River. Polycyclic Aromatic Compounds, 36(5), 656670. DOI: 10.1080/10406638.2015.1042552.

20. Feng, J., Hu, P., Zhang, F., Wu, Y., Liu, S., & Sun, J. (2016). Ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from the middle and lower reaches of the Yellow River, China. Human and Ecological Risk Assessment, 22(2), 532542. DOI: 10.1080/10807039.2015.1092376.

21. Besseling, E., Redondo-Hasselerharm, P., Foekema, E. M., & Koelmans, A. A. (2019). Quantifying ecological risks of aquatic micro- and nanoplastic. Critical Reviews in Environmental Science and Technology, 49 (1), 3280. DOI: 10.1080/10643389.2018.1531688.

22. Everaert, G., Van Cauwenberghe, L., De Rijcke, M., Koelmans, A. A., Mees, J., Vandegehuchte, M., & Janssen, C. R. (2018). Risk assessment of microplastics in the ocean: Modelling approach and first conclusions. Environmental Pollution, 242, 19301938. DOI: 10.1016/j.envpol.2018.07.069.

23. Koelmans, A. A., Besseling, E., Foekema, E., Kooi, M., Mintenig, S., Ossendorp, B. C., Redondo-Hasselerharm, P. E., Verschoor, A., Van Wezel, A. P., & Scheffer, M. (2017). Risks of Plastic Debris: Unravelling Fact, Opinion, Perception, and Belief. Environmental Science and Technology, 51 (20), 1151311519. DOI: 10.1021/acs.est.7b02219.

24. Rybalova, O., & Artemiev, S. (2017). Development of a procedure for assessing the environmental risk of the surface water status deterioration. Eastern-European Journal of Enterprise Technologies, 5(10-89), 6776. DOI: 10.15587/1729-4061.2017.112211.

25. Rybalova, O., Artemiev, S., Sarapina, M., Tsymbal, B., Bakhareva, A., Shestopalov, O., & Filenko, O. (2018). Development of methods for estimating the environmental risk of degradation of the surface water state. Eastern-European Journal of Enterprise Technologies, 2(10-92), 417. DOI: 10.15587/1729-4061.2018.127829.

26. Vasenko, A., Rybalova, O., & Kozlovskaya, O. (2016). A study of significant factors affecting the quality of water in the Oskil River (Ukraine). Eastern-European Journal of Enterprise Technologies, 3(10-81), 4855. DOI: 10.15587/1729-4061.2016.72415.

27. Tretyakov, O., Bezsonnyi, V., & Shevchenko, T. (2015). Improving the environmental safety of drinking water supply in Kharkiv region (Ukraine). Eastern-European Journal of Enterprise Technologies, 5(10-77), 40–49.DOI: 10.15587/1729-4061.2015.51398.

28. Bezsonnyi, V., Ponomarenko, R., Tretyakov, O., Asotsky, V., & Kalynovskyi, A. (2021). Regarding the choice of composite indicators of ecological safety of water in the basin of the Siversky Donets. Journal of Geology, Geography and Geoecology, 30(4), 622631. DOI: 10.15421/112157.