DETERMINATION OF THE ECOLOGICAL STATE OF THE KREMENCHUK RESERVOIR ON THE BASIS OF INFORMATION ENTROPY
Bezsonnyi Vitalii
Simon Kuznets Kharkiv National University of Economics, Kharkiv, Ukraine
https://orcid.org/0000-0001-8089-7724
Plyatsuk Leonid
Sumy State University, Sumy, Ukraine
https://orcid.org/0000-0003-0095-5846
Ponomarenko Roman
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
https://orcid.org/0000-0002-6300-3108
Tretyakov Oleg
National Aviation University, Kyiv, Ukraine
https://orcid.org/0000-0001-9868-0486
DOI: 10.52363/2522-1892.2023.1.3
Keywords: entropy index of water quality, ecological state of surface waters, Kremenchuk Reservoir, pollution
Abstract
It was established that the water does not meet the upper limit of the 1st quality class according to DSTU 4808:2007 by all indicators except for chloride ions, SPAR and suspended substances. There is a decrease in the level of BSK5 at the monitoring post in the lower part of the reservoir, which indicates the entry of substances into the watercourse that inhibit biochemical processes. There is also an increasing trend in the content of sulfates, phosphates, nitrogen compounds and HSC in water for control points located within the influence of industrial cities, along the reservoir. The highest values of the entropy index of water quality are characteristic of points p2, p. Adamivka, Chygyryn district (0.59015) and p3, village. Pronozivka Globyn district, (0.63092). These control points are located at a considerable distance from industrial centers, so pollution caused by agricultural production (application of phosphate and nitrogen fertilizers) probably plays a decisive role in the formation of water quality. The smallest value of the index (0.39397) is characteristic of item p1 – c. Sokirne, drinking water intake in the city of Cherkasy. The value of the non-torsion water quality index is in the range from 0.39397 (point p1) to 0.63092 (point p3).
References
1. Alver, A. (2019). Evaluation of conventional drinking water treatment plant efficiency according to water quality index and health risk assessment. Environmental Science and Pollution Research, 26, 27225–27238. DOI: 10.1007/s11356-019-05801-y.
2. Liu, D., Du, Y., Luo, J., Yu, S., & Duan, H. (2020). Human activities determine quantity and composition of dissolved organic matter in lakes along the Yangtze River. Water Research, 168, 115132. DOI: 10.1016/j.watres.2019.115132.
3. Gad, M., & El-Hattab, M. (2019). Integration of water pollution indices and DRASTIC model for assessment of groundwater quality in El Fayoum depression, western desert, Egypt, Journal of African Earth Sciences, 158, 103554. DOI: 10.1016/j.jafrearsci.2019.103554.
4. Kim, J. H., Shin, J. K., Lee, H., Lee, D. H., Kang, J. H., Cho, K. H., Lee, Y. G, Chon, K., Baek, S. S., & Park, Y. (2021). Improving the performance of machine learning models for early warning of harmful algal blooms using an adaptive synthetic sampling method. Water Research, 207, 117821. DOI: 10.1016/j.watres.2021.117821.
5. Podlasek, A., Koda, E., Markiewicz, A., & Osinski, P. (2019). Identification of Processes and Migration Parameters for Conservative and Reactive Contaminants in the Soil-Water Environment: Towards a Sustainable Geoenvironment. ICEG 2018: Proceedings of the 8th International Congress on Environmental Geotechnics, 1, 551–559. DOI: 10.1007/978-981-13-2221-1_60.
6. Grinberga, L., Grabuža, D., Grinfelde, I., Lauva, D., Celms, A., Sas, W., Głuchowski, A., & Dziecioł, J. (2021). Analysis of the Removal of BOD5, COD and Suspended Solids in Subsurface Flow Constructed Wetland in Latvia. Acta Scientiarum Polonorum Architectura, 20, 8. DOI: 10.22630/ASPA.2021.20.4.31.
7. Lan, J., Wang, T., Chawchai, S., Cheng, P., Zhou, K., Dongna, K.Y., Yaqin, Y., Jingjie Zang, W., Liu, Y., Tan, L., Ai, L., & Xu, H. (2020). Time marker of 137Cs fallout maximum in lake sediments of Northwest China. Quaternary Science Reviews, 241, 106413. DOI: 10.1016/j.quascirev.2020.106413.
8. Massoud, M. (2012). Assessment of water quality along a recreational section of the Damour River in Lebanon using the water quality index. Environmental Monitoring and Assessment, 184, 4151–4160. DOI: 10.1007/s10661-011-2251-z.
9. Lyu, H.-M., Zhou, A., & Shen, S.-L. (2021). The development of IFN-SPA: A new risk assessment method of urban water quality and its application in Shanghai. Journal of Cleaner Production, 282, 124542. DOI: 10.1016/j.jclepro.2020.124542.
10. Paun, I., Cruceru, L., Chiriac, F. L., Niculescu, M., Vasile, G., & Marin, N. (2016). Water quality indices – methods for evaluating the quality of drinking water. Incd ecoind – international symposium – simi 2016 “The environment and the industry”, proceedings book, 395–402. DOI: 10.21698/simi.2016.0055.
11. Shwetank, S., & Chaudhary, J. K. (2020). A Comparative Study of Fuzzy Logic and WQI for Groundwater Quality Assessment. Procedia Computer Science, 171, 1194–1203. DOI: 10.1016/j.procs.2020.04.128.
12. Pandey, R., & Pattanaik, L. A. (2014). Fuzzy QFD Approach to Implement Reverse Engineering in Prosthetic Socket Development. International Journal of Industrial and Systems Engineering, 17, 1–14. DOI: 10.1504/IJISE.2014.060819.
13. Bezsonnyi, V., Tretyakov, O., Ponomarenko, R., Borodych, P., Burmenko, O., & Karpets, K. (2021). Integral'na ocinka ekologichnogo stanu Dniprovs'kogo vodoshovyshha [Environmental risk assessment due to the impact of communal facilities on surface waters]. Problems of Emergency Situations, 2(34), 58–76. DOI: 10.52363/2524-0226-2021-34-5. [in Ukrainian].
14. Bezsonnyi, V., Tretyakov, O., Ponomarenko, R., Kalda, G., & Asotskyi, V. (2021). Monitoryng ekologichnoi' bezpeky vodotokiv za kysnevymy pokaznykamy [Monitoring of ecological safety of watercourses by means of oxygen indicators]. Technogenic and ecological safety, 10(2/2021), 75–83. DOI: 10.52363/2522-1892.2021.2.12. [in Ukrainian].
15. Rezaei, A., Hassani, H., Hassani, S., Jabbari, N., Fard Mousavi, S. B., & Rezaei, S. (2019). Evaluation of Groundwater Quality and Heavy Metal Pollution Indices in Bazman Basin, Southeastern Iran. Groundwater for Sustainable Development, 9, 100245. DOI: 10.1016/j.gsd.2019.100245.
16. Li, R., Zou, Z., & An, Y. (2016). Water Quality Assessment in Qu River Based on Fuzzy Water Pollution Index Method. Journal of Environmental Sciences, 50, 87–92. DOI: 10.1016/j.jes.2016.03.030.
17. Rezaei, A., Hassani, H., Hayati, M., Jabbari, N., & Barzegar, R. (2018). Risk Assessment and Ranking of Heavy Metals Concentration in Iran’s Rayen Groundwater Basin Using Linear Assignment Method. Stochastic Environmental Research and Risk Assessment, 32, 1317–1336. DOI: 10.1007/s00477-017-1477-x.
18. Son, C. T., Giang, N. T. H., Thao, T. P., Nui, N. H., Lam, N.T., & Cong, V. H. (2020). Assessment of Cau River water quality assessment using a combination of water quality and pollution indices. Journal of Water Supply: Research and Technology-Aqua, 69(2), 160–172. DOI: 10.2166/aqua.2020.122.
19. Podgorski, J., & Berg, M. (2022). Global analysis and prediction of fluoride in groundwater. Nature Communications, 13(1), 4232. DOI: 10.1038/s41467-022-31940-x.
20. Simonyan, G. (2020). Systemic-Entropic Approach for Assessing Water Quality of Rivers, Reservoirs, and Lakes. In A. Devlin, J. Pan, & M. M. Shah (Eds.), Inland Waters – Dynamics and Ecology. IntechOpen. DOI: 10.5772/intechopen.93220.
21. Simonyan, G., & Pirumyan, G. (2019). Entropy – System Approach to Assess the Ecological Status of Reservoirs in Armenia. Preprints, 2019010260. DOI: 10.20944/preprints201901.0260.v1.
22. Ashby, W. (1959). Introduction to cybernetics. M.: IL, 432.
23. Shannon, C. (1963). Works on information theory and cybernetics. M.: IL, 830.
24. MacArthur, R. M. (1955). Fluctuation of animal populations and measure of community stability. Ecology, 36(3), 533–536.
25. Margalef, R. (1958). Information theory in ecology. General Systems, 3, 36.
26. Yatsyk, A. V. (2008). Kakhovsʹke vodoskhovyshche [Kakhov Reservoir], Entsyklopediya Suchasnoyi Ukrayiny, 8. Institute of Encyclopedic Research of the National Academy of Sciences of Ukraine. https://esu.com.ua/article-11146 (access date: 10.03.2023). [in Ukrainian].
27. DSTU 4808:2007. (2007). Dzherela tsentralizovanoho pytnoho vodopostachannya. Hihiyenichni ta ekolohichni vymohy shchodo ekolohichnoho stanu poverkhnevykh vod i pravyla vybyrannya [Sources of centralized drinking water supply. Hygienic and ecological requirements for water quality and selection rules]. http://online.budstandart.com/ua/catalog/doc-page?id_doc=53159 (access date: 10.03.2023). [in Ukrainian].
28. Nekos, A., Boіaryn, M., Tsos, O., Lugowska, M., & Netrobchuk, I. (2021). Assessment of the ecological condition of the Western Bug river basin according to the macrophyte index for rivers (MIR). Visnyk of V. N. Karazin Kharkiv National University, Series "Geology. Geography. Ecology, 54, 316–328. DOI: 10.26565/2410-7360-2021-54-24.
29. Shevchenko, T. O. (2016). Vyvchennja vplyvu biogennyh rechovyn u mis'kyh stichnyh vodah, shho skydajut'sja, na poverhnevi vodojmy [Study of the impact of biogenic substances in urban wastewater discharged on surface water bodies]. Problemy vodopostachannja, vodovidvedennja ta gidravliky, 27, 437–445. URL: https://repositary.knuba.edu.ua/bitstream/handle/987654321/2115/201627-437-445.pdf?sequence=1 (access date: 10.03.2023). [in Ukrainian].
30. Tretyakov, O., Shevchenko, T., & Bezsonnyi, V. (2015). Improving the environmental safety of drinking water supply in Kharkiv region (Ukraine). Eastern-European Journal of Enterprise Technologies, 5(10(77), 40–49. DOI: 10.15587/1729-4061.2015.51398.