IDENTIFICATION OF CONCENTRATIONS OF SUBSTANCES IN THE OPEN ATMOSPHERE WITH THE PROCESSED MEASUREMENT OF THE FOURIER SPECTRAL RADIOMETER

PDF(UKRAINIAN)

 

Kovalev Alexander

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0002-4974-5201

 

Titarenko Andriy

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0003-4878-9170

 

DOI: 10.52363/2522-1892.2023.1.7

 

Keywords: Fourier spectroscopy, infrared spectra, remote gas analysis, substance identification, concentration recovery, target substance

 

Abstract

The theoretical justification was carried out and the method of operational remote non-sampling gas analysis of the atmosphere in emergency situations was selected. As a result of the analysis of the methods of non-sampling determination of substances in the open atmosphere, it was established that the most appropriate use of optical spectral methods of monitoring the composition of the atmosphere, based on the registration and subsequent analysis of the electromagnetic radiation of the object of observation. To determine the most effective method of remote monitoring, an analytical classification of all possible optical spectral methods of remote monitoring was compiled: lidar methods, acousto-optic filters, correlation spectrometers, interference light filters with reconfiguration, use of the Fabry-Pere interferometer. It has been established that to solve the problem of non-sampling analysis of substances in the open atmosphere, it is most appropriate to use an infrared Fourier spectral radiometer of medium spectral resolution, which works in passive mode in the window of atmospheric transparency of 7-14 μm and allows obtaining experimental information in real time.

Algorithms for the numerical solution of the problem of identification of substances and restoration of their concentrations based on infrared spectra of medium resolution in the region of 7…14 μm obtained on an IR Fourier spectroradiometer have been developed. Algorithms make it possible to identify substances by the unit spectrum of an open atmospheric track. Instead of considering a multidimensional system of linear equations, it is proposed to solve one or several one-dimensional problems. The transition to a one-dimensional problem is carried out by methods of correlation analysis. The influence of noise in the original spectrum on errors in solving the problem of determining concentrations was studied.

 

References

1. Kovalov, O. (2020). Obosnovanie metoda operativnogo kontrolja sostojanija atmosfery v uslovijah chrezvychajnyh situacіj [Substantiation of the method of operational control of the atmosphere in emergency situations]. Problems of emergency situations, 31, 138175. [in Russian].

2. OrianaA., RéhaultJ., PredaF., PolliD., & CerulloG. (2016).  Scanning Fourier transform spectrometer in the visible range based on birefringent wedges. Journal of the Optical Society of America, 33(7), 1415–1420.

3. LiuJ., XuW.-b., LiJ.-W., YangM., XiuP., ZhengC., & SunX.-Z. (2019). Study on recognition method of ethylene gas based on absorption characteristics of infrared spectrum. Applied Optics and Photonics China (AOPC2019), 2019, Beijing, China. Proceedings, 11338Art. 113380G, 2859.

4. KillingerDK., & MenziesRT. (2019). Editorial for the Special Issue Optical and Laser Remote Sensing of the Atmosphere. Remote Sensing, 11(7), 742.

5. Wang, L., Zhang, D., Chen, C., Hu, F., & Zhang, L. (2020). Impact analysis of surface albedo heterogeneity on shortwave radiation using a 3D radiative transfer model. Journal of Atmospheric and Solar-Terrestrial Physics, 204, 105287, 3754.

6. Blaunstein, N., & KopeikaN. (2017). Optical waves and laser beams in the irregular atmosphere. CRC Press. 334.

7. Goldenstein, CS., Spearrin, R. M., JeffriesJB., & Hanson, RK. (2017). Infrared laser-absorption sensing for combustion gases. Progress in Energy and Combustion Science, 60, 132–176.

8. Kovalov, O., Elizarov, A., Kokhanenko, V., & Manshura, S. (2021). Metod lokal'nogo monitoryngu atmosfery za dopomogoju bezpilotnyh lital'nyh aparativ [Method of local atmosphere monitoring using drone]. Problems of emergency situations, 34, 208231. [in Ukrainian].

9. ZhengW., YuC., YangZ., ZhangW., WangH., LeiZ., YuanX., ZhangP., YanM., & ZhengZ. (2019). Remote sense for environment pollution gases in wide infrared spectral range. Infrared and Laser Engineering, 48(11), 110400, 34–58.

10. LeeJH., KimHJ., KimJ.-S., NamH., KangYI., & ParkB.-H. (2018). Development of compact stand-off hazardous chemical detector based on Michelson interferometer. Optical Engineering, 57(8), 084105, 108132.

11. ZhengS. N., ZouJ., CaiH., SongJ. F., ChinL. K., LiuP. Y., LinZ. P., KwongD. L., & LiuA. Q. (2019). Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nature Communications, 10, 2349, 1832.

12. KitaDM., MirandaB., FavelaD., BonoD., MichonJ., LinH., GuT. & HuJ. (2008). High-performance and scalable on-chip digital Fourier transform spectroscopy. Nature Communications, 9, 4405.

13. Svedberg, U. (2018). Fourier Transform Infrared Spectroscopy in Industrial Hygiene Applications: Assessment of Emissions from and Exposures in Wood Processing Industries, Doctoral thesis. Uppsala, Uppsala University, 58.

14. Kovalov O., Sobyna V., Sokolov D., Harbuz S., Vasyliev S., Kokhanenko V. (2021). Metod organizacii' monitoryngu atmosfernogo povitrja [Method of organization of atmospheric air monitoring]. Technogenic and ecological safety, 9(1/2021), 16–25.

15. de DonatoPh., BarresO., SausseJ., & TaquetN. (2016). Advances in 3-D infrared remote sensing gas monitoring. Application to an urban atmospheric environment. Remote Sensing of Environment, 175, 301309.

16. HöfertN., SchäferK., RichterA., WeberK., & MaasP. (2018). Standards VDI 4211 and VDI 4212 on passive FTIR and DOAS remote sensing techniques. SPIE Remote Sensing, 2018, Berlin, Germany. Proceedings, 10786, 275309.

17. Wang, T., Gao, T., Zhang, H., Ge, M., Lei, H., Zhang, P., Zhang, P., Lu, C., Liu, C., Zhang, H., Zhang, Q., Liao, H., Kan, H., Feng, Z., Zhang, Y., Qie, X., Cai, X., Li, M., Liu, L., & Tong, S. (2019). Review of Chinese atmospheric science research over the past 70 years: Atmospheric physics and atmospheric environment. Science China Earth Sciences, 62, 1903–1945.

18. Mahesh, P., Biswadip, G., Rao, P. V. N., Dadhwal, V. K., Sreenivas, G., & Kanchanam A. L. (2017). A new ground-based FTIR spectrometer reference site at Shadnagar (India) and preliminary columnar retrievals of CH4 and N2O. International Journal of Remote Sensing, 38(14), 122–185.

19. Suskind, J., Bamet, C. D., & Blaisdell, J. M. (2017). Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 390409.

20. HébertP., PierangeloC., RosakA., CansotE., BernardF., & Camy-PeyretC. (2017). Progress in static fourier transform infrared spectroscopy: assessment of sifti preliminary performances. International Conference on Space Optics – ICSO Proceedings, 10567, 1056723. DOI: 10.1117/12.2308129.

21. LindnerC., KunzJ., HerrSJ., WolfS., KießlingJ., & KühnemannF. (2021). Nonlinear interferometer for Fourier-transform mid-infrared gas spectroscopy using near-infrared detection. Optics Express, 29, (3), 4035-4047.

22. WalkerKA., SheesePE., BooneCD., FlittnerDE., & DamadeoR. (2019). Comparisons of Nitrogen Dioxide Profiles from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and Stratospheric Aerosol and Gas Experiment (SAGE). III.Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors) OSA Technical Digest (Optical Society of America), 219–254.

23. NieX., RyckeboerE., Roelkens, G., & Baets, R. (2017). CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform. Optics Express, 25(8), A409–A418.

24. DodangodageR., Bernath, P. F., Boone, C. D., Crouse, J., & Harrison, J. J. (2021). The first remote-sensing measurements of HFC-32 in the Earth's atmosphere by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). Journal of Quantitative Spectroscopy and Radiative Transfer, 272, 107804.

25. SouzaMC. M. M., Grieco, A., FrateschiNC., & Fainman, Y. (2018). Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction. Nature Communications, 9, 665.

26. Frontiers and advances in molecular spectroscopy / eds. Laane, J. (2018). Elsevier Science, 788.

27. Landes, T., Tamimi, A., LavoieJ., RaymerMG., SmithBJ., & MarcusAH. (2019). Quantum Fourier Transform Spectroscopy. Rochester Conference on Coherence and Quantum Optics (CQO-11) OSA Technical Digest (Optical Society of America), W4B.2.

28. Jabbari, A., Hassani, K., & Tavassoly, M.T. (2019). Determination of the spectral line profile using a phase gradient step and stationary Fourier transform spectroscopy. Applied Optics, 58(19), 5353–5359.

29. Schütze, C., & Sauer, U. (2016). Challenges associated with the atmospheric monitoring of areal emission sources and the need for optical remote sensing techniques – an open-path Fourier transform infrared (OP-FTIR) spectroscopy experience report. Environmental Earth Sciences, 75, 919.

30. Rutkowski, L., JohanssonAC., ZhaoG, HausmaningerT, KhodabakhshA., AxnerO., & FoltynowiczA. (2017). Sensitive and broadband measurement of dispersion in a cavity using a Fourier transform spectrometer with kHz resolution. Optics Express, 25(18), 21711–21718.