Gornostal Stella

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


Petukhova Olena

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


Holovakhina Alevtyna

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


Romenska Yulija

National University of Civil Defence of Ukraine, Kharkiv, Ukraine


DOI: 10.52363/2522-1892.2023.1.10


Keywords: aeration tank, secondary settling tank, waste liquid, environmental requirements, biological treatment, technological regulations, environmental protection



The paper considers the issue of compliance with the technological regulations for the operation of the regenerator of the aeration tank. An analysis of the features of the processes in the regenerator was carried out, the factors affecting them were determined, namely the intensity of aeration, consumption and initial dose of activated sludge.

To determine the characteristics of activated sludge at the exit from the regenerator, experimental studies were conducted and a model was obtained that describes the regeneration process in the aeration tank. Using the model, the influence of the process components on the concentration of activated sludge at the outlet of the aeration tank was studied. As a result of the study, it was established that the dose of sludge at the exit from the first corridor of the aeration tank (regenerator) depends on the concentration and consumption of activated sludge, which is received after settling the mixture from secondary sedimentation tanks.

The practical use of the obtained results will make it possible to quickly respond to changes in the technological mode of sludge regeneration and effectively influence the process of biological cleaning in the aeration tank. Compliance with the technological regulations for the operation of treatment facilities is aimed at protecting the environment, preventing pollution of water bodies due to the inflow of insufficiently treated wastewater.



1.    All-Ukrainian Environmental League. (2007). Ekolohichna sytuatsiia ta stan pytnykh vod Ukrainy [Ecological situation and state of drinking water of Ukraine]. (access date: 10.03.2023). [in Ukrainian]

2.    Kovalenko, S., Ponomarenko, R., Tretyakov, O., Titarenko, A., & Ivanov, Y. (2022). Vyznachennja ekologichnogo stanu poverhnevogo vodnogo ob’jektu (na prykladi richky Sejm) [Determination of the ecological condition of a surface water object (on the example of the Seim River)]. Technogenic and ecological safety, 12(2/2022), 23–31. DOI: 10.52363/2522-1892.2022.2.3. [in Ukrainian].

3.    Vodnyi kodeks Ukrainy [Water code of Ukraine], 213/95-VR Decree of Verkhovna Rada of Ukraine (1991). (access date: 10.03.2023). [in Ukrainian].

4.    Pro okhoronu navkolyshnoho pryrodnoho seredovyshcha [On environmental protection], 1264-XII Law of Ukraine (1995). (access date: 10.03.2023). [in Ukrainian].

5.    Epoian, S. M., Hopchak, I.V., Sorokina, K. B., Airapetian, T. S., & Zhuk, V. M. (2021). Vyznachennia vodoiemnosti haluzei ekonomiky Ukrainy [Determination of the water capacity of the branches of the economy of Ukraine]. Naukovyi visnyk budivnytstva, 105(3), 214–219. [in Ukrainian].

6.    Khare, Y. P., Naja, G. M., Paude, R., & Martinez C. J. (2020). A watershed scale assessment of phosphorus remediation strategies for achieving water quality restoration targets in the western Everglades. Ecological Engineering, 143, 105663. DOI: 10.1016/j.ecoleng.2019.105663.

7.    Chen, W.-H., Lin, S.-J., Lee, F.-C, Chen, M.-H., Yeh, T. Y., & Kao, C. M. (2017). Comparing volatile organic compound emissions during equalization in wastewater treatment between the flux-chamber and mass-transfer methods. Process Safety and Environmental Protection, 109, 410–419. DOI: 10.1016/j.psep.2017.04.023.

8.    Muoio, R., Palli L., Ducci I., Coppini E., Bettazzi E., Dadd, D., Fibbi D., Gori R. (2019). Optimization of a large industrial wastewater treatment plant using a modeling approach: A case study. Journal of Environmental Management, 249, 109436. DOI: 10.1016/j.jenvman.2019.109436.

9.    Li, W., Liu, J., Zhen, Y., Lin, M., Sui, X., Zhao, W., Bing, X., Lin, J., & Zhai, L. (2021). Simultaneous removal of nitrite and organics in a biofilm-enhanced high-salt wastewater treatment system via mixotrophic denitrification coupled with sulfate reduction. Journal of Water Process Engineering, 40, 101976. DOI: 10.1016/j.jwpe.2021.101976

10.   Chan, J. S., Poh, P. E., Ismadi, M.-Z. P., Yeo, L. Y., & Tan, M. K.. (2021). Acoustic enhancement of aerobic greywater treatment processes. Journal of Water Process Engineering, 44, 102321. DOI:10.1016/j.jwpe.2021.102321

11.   El-Rawy, M.. Abd-Ellah, M. K., Fathi, H., & Ahmed, A. K. A. (2021). Forecasting effluent and performance of wastewater treatment plant using different machine learning techniques. Journal of Water Process Engineering, 44, 102380. DOI: 10.1016/j.jwpe.2021.102380.

12.   Valentin, C., Chassin, N., Couenne, F., Choubert, J. M., & Jallut, C. (2022). 1-D Dynamic knowledge-based model of urban sludge continuous-flow settling process. Comparison with experimental results. (access date: 10.03.2023).

13.   Reyhaneh, H., Javad, A., Behrooz, S., Omid, M., & Sohrab, Z. (2023). Reliable Tools to Forecast Sludge Settling Behavior: Empirical Modeling. Energies, 16(2), 963. DOI: 10.3390/en16020963.

14.   Wang, Y., Jin, X., Yang, S., Wang, G., Xu, L., Jin, P., Shi, X., & Shi, Y. (2021). Interactions between flocs and bubbles in the separation zone of dissolved air flotation system. Science of The Total Environment, 761, 143222. DOI: 10.1016/j.scitotenv.2020.143222.

15.   Cagnetta, C., Saerens, B., Meerburg, F. A., Decru, S. O., Broeders, E., Menkveld, W., Vandekerckhove, T. G. L., De Vrieze, J., Vlaeminck, S. E., Verliefde, A. R. D., De Gusseme, B., Weemaes, M., & Rabaey, K. (2019). High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery. Bioresource Technology, 291, 121833. DOI: 10.1016/j.biortech.2019.121833.

16.   Krainiukov, О. M. & Timchenko, V. D. (2018). Economic consequences of anthropogenic water pollution (by using pechenizky reservoir as an example). Visnyk of V. N. Karazin Kharkiv National University Series «Ecоlogy», 19, 66–74.

17.   Lemesh, M. V., Biliaiev, M. M., Tatarko, L. H., & Yakubovska, Z. M. (2020). Modeliuvannia protsesu biolohichnoho ochyshchennia stichnykh vod na bazi kamernykh modelei [Modeling of the process of biological wastewater treatment based on chamber models]. Nauka ta prohres transportu, 3(87), 16–24. [in Ukrainian].

18.   Nechaiev, V. P., Beridze, T. M., Kononenko, V. V., Riabushenko, N. V., & Bradul, O. M. (2005). Teoriia planuvannia eksperymentu: navch. posibnyk [Theory of experiment planning]. Kyiv: Kondor, 232. [in Ukrainian].

19.   DSTU ISO 5667-13:2005. (2005). Yakist vody. Vidbirannia prob. Chastyna 13. Nastanovy shchodo vidbyrannia prob mulu na sporudakh dlia ochyshchennia stichnykh vod i dlia vodohotuvannia [Water quality. Sampling of samples. Part 13. Guidelines for sludge sampling at wastewater treatment and water treatment facilities]. (access date: 10.03.2023). [in Ukrainian].

20.   Gorban, D., Molchan, A., & Gornostal, S. (2022). Proposals to improve the technology of urban wastewater treatment facilities. Sectoral research XXI: characteristics and features: collection of scientific papers «SCIENTIA» with Proceedings of the III International Scientific and Theoretical Conference. Chicago, USA, 2, 72–75.

21.   Molchan, A. P., Horban, D. H., & Gornostal, S. A. (2021). Dotrymannia ekolohichnykh vymoh pry ochyshchenni miskykh stichnykh vod [Observance of ecological requirements in the treatment of urban wastewater]. I Mizhnarodna studentska naukova konferentsiia «Priorytetni napriamky ta vektory rozvytku svitovoi nauky». Materialy konferentsii, 2, 3033. [in Ukrainian].