ENVIRONMENTAL SAFETY OF ATMOSPHERIC AIR IN THE ZONE OF INFLUENCE OF THERMAL POWER PLANTS WHILE USING SUNFLOWER WASTES
PDF(UKRAINIAN)
Oskina Maryna
Ukrainian Scientific Research Institute of Ecological Problems, Kharkiv, Ukraine
https://orcid.org/0000-0002-7943-8237
Honcharenko Ihor
Sumy State University, Sumy, Ukraine
https://orcid.org/0000-0002-5205-7506
Ryzhchenko Olga
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
https://orcid.org/0000-0003-1693-6121
DOI: 10.52363/2522-1892.2023.2.2
Keywords: environmental safety, atmospheric air, pollution, particulate matter, thermal power plants, renewable energy, agricultural waste
Abstract
Air pollution is a significant and escalating global issue, posing a major threat to public health. Each year, it directly contributes to 6.5 million premature deaths, primarily due to cardiovascular and respiratory diseases resulting from exposure to air pollutants, notably fine particulate matter (PM). Beyond its well-documented health effects, recent evidence from epidemiological studies and controlled animal research underscore its detrimental impact on cognitive function and brain health. It's worth noting that residing in heavily polluted areas is linked to increased cognitive impairment and a heightened risk of neurodegenerative conditions. This association is particularly strong with pollutants stemming from energy and transportation, such as PM and nitrogen oxides (NOx). The intricate nature of PM pollutants, particularly ultrafine particles (UFP) with a diameter of less than 100 nm, enables them to infiltrate the human body, bypassing various protective mechanisms. Given this context, investigations into the influence of solid-fuel power plants, recognized by the European Environment Agency as major contributors to atmospheric air pollution, are of utmost importance. Existing regulatory and methodological frameworks do not adequately address contemporary realities and requirements, especially concerning the assessment and control of the environmental impact of thermal power plants using agricultural waste as fuel. This study aims to provide scientific and theoretical support for additional aspects related to the emissions of thermal power plants and their effects on both humans and the environment. This research holds particular significance when evaluating the placement of such facilities near populated areas and when making informed decisions regarding energy production technologies from renewable sources.
References
1. HO “Ahenstvo vidnovliuvalnoi enerhetyky”. (2021). Spryianna enerhetychnii bezpetsi ta stalomu rozvytku mistsevykh hromad v Ukraini. [Promoting energy security and sustainable development of local communities in Ukraine]. HO “Ahenstvo vidnovliuvalnoi enerhetyky”, 108. [in Ukrainian]
2. Web resource of NJSC “Ukrenergo”. URL: https://ua.energy/vstanovlena-potuzhnist-energosystemy-ukrayiny. [in Ukrainian]
3. Web resource of the State Energy Efficiency Agency of Ukraine. URL: https://saee.gov.ua/uk/activity/vidnovlyuvana-enerhetyka/potentsial. [in Ukrainian]
4. Web resource of the State Energy Efficiency Agency of Ukraine “HEAT FROM BIOFUEL”. URL: https://saee.gov.ua/sites/default/files/Heat_biomass_ua.pdf. [in Ukrainian]
5. Heletukha, H. H., Drahniev, S. V., Zheliezna, T. A., & Bashtovyi, A. I. (2020). Perspektyvy enerhetychnoho vykorystannia pobichnoi produktsii vid vyroshchuvannia soniashnyku [Prospects for the energy use of by-products from sunflower cultivation]. Bioenerhetychna asotsiatsiia Ukrainy. Analitychna zapyska, 25, 35. URL: https://uabio.org/materials/uabio-analytics. [in Ukrainian]
6. The Spanish Bioenergy Association (AVEBIOM) together with the Center for Research and Technology of Hellas (CERTH). (2022). AgroBioHeat DL VA 211-2022 project. Enerhiia z ahropromyslovykh zalyshkiv. [Energy from agricultural residues]. The Spanish Bioenergy Association (AVEBIOM) together with the Center for Research and Technology of Hellas (CERTH), 60. [in Ukrainian]
7. European Environment Agency. (2021). Health impacts of air pollution in Europe. URL: https://www.eea.europa.eu/publications/air-quality-in-europe-2021/health-impacts-of-air-pollution. [in English].
8. Pro skhvalennia Enerhetychnoi stratehii Ukrainy do 2035 roku “Bezpeka, enerhoefektyvnist, konkurentospromozhnist” [On the Approval of the Energy Strategy of Ukraine until 2035 “Safety, Energy Efficiency, Competitiveness”]. 373-r Decree of the Cabinet of Ministers of Ukraine (2017). URL: https://zakon.rada.gov.ua/laws/show/605-2017-%D1%80#Text. [in Ukrainian]
9. Pro skhvalennia Kontseptsii realizatsii derzhavnoi polityky u sferi teplopostachannia [On the Approval of the Concept of Implementation of State Policy in the Field of Heat Supply]. 569-r Decree of the Cabinet of Ministers of Ukraine (2017). URL: https://zakon.rada.gov.ua/laws/show/569-2017-%D1%80#Text. [in Ukrainian]
10. Natsionalna ekonomichna stratehiia na period do 2030 roku. [National economic strategy for the period until 2030]. (2021). URL: https://www.kmu.gov.ua/npas/pro-zatverdzhennya-nacionalnoyi-eko-a179. [in Ukrainian]
11. Pro alternatyvni vydy palyva [On Alternative Fuels]. 1391-VI Law of Ukraine. (2009). URL: http://zakon2.rada.gov.ua/laws/show/1391-14. [in Ukrainian]
12. Pro Zatverdzhennia Derzhavnykh sanitarnykh pravyl planuvannia ta zabudovy naselenykh punktiv [On the approval of the State Sanitary Rules for the Planning and Development of Settlements]. 173 Order of the Ministry of Health of Ukraine (1996). URL: https://zakon.rada.gov.ua/laws/show/z0379-96#Text. [in Ukrainian]
13. Buzea, C., Pacheco, I., & Robble, K. (2007). Nanomaterial and nanoparticles: Sources and toxicity. Biointerphases, 2(4), 49–55.
14. Schraufnagel, D. E., Balmes, J. R., Cowl, C. T., De Matteis, S., Jung, S.-H., Mortimer, K., Perez-Padilla, R., Rice, M. B., Riojas-Rodriguez, H., Sood, A., Thurston, G. D., To, T., Vanker, A., & Wuebbles, D. J. (2019). Air Pollution and Noncommunicable Diseases. Chest, 55(2), 417–426. DOI: 10.1016/j.chest.2018.10.041.
15. European Environmental Agency. (2023). Europe’s Air Quality Status. URL: https://www.eea.europa.eu/publications/europes-air-quality-status-2023/.
16. Interactive map: Relationship between PM2.5 exposure, mortality and GDP per capita. URL: https://eea.maps.arcgis.com/apps/InteractiveLegend/index.html?appid=f008e0dc0ce24edfae5463748de10f27.
17. Setti, L., Passarini, F., de Gennaro, G., Di Gilio, A., Palmisani, J., Buono, P., Fornari, G., Perrone, M. G., Piazzalunga, A., Barbieri, P., Rizzo, E., & Miani, A. (2020). Relazione circa l’effetto dell’inquinamento da particolato atmosferico e la diffusione di virus nella popolazione. Società Italiana di Medicina Ambientale, 2020. 6 p. URL: https://projects.iq.harvard.edu/covid-pm/publications/relazione-circa-l%E2%80%99effetto-dell%E2%80% 99 inqui namento-da-particolato-atmosferico-e-la.
18. Kwon, H.-S., Ryu, M.H., & Carlsten, C. (2020). Ultrafine particles: unique physicochemical properties relevant to health and disease. Experimental & Molecular Medicine, 52(3), 318‑328. DOI: 10.1038/s12276-020-0405-1.
19. Miller, M. R., Raftis, J. B., Langrish, J. P., McLean, S. G., Samutrtai, P., Connell, S. P., Wilson, S., Vesey, A. T., Fokkens, P. H. B., Boere, A. J. F., Krystek, P., Campbell, C. J., Hadoke, P. W F. , Donaldson, K., Cassee, F. R., Newby, D. E., Duffin, R., & Mills, N. L. (2017). Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano, 11, 4542‑4552.
20. Moreno-Ríos, A. L., Tejeda-Benítez, L. P., & Bustillo-Lecompte, C. F. (2021). Sources, characteristics, toxicity, and control of ultrafine particles: An overview. Geoscience Frontiers, 101147. URL: https://doi.org/10.1016/j.gsf.2021.101147.
21. Yacobi, N. R., Malmstadt, N., Fazlollahi, F., DeMaio, L., Marchelletta, R., Hamm-Alvarez, S. F., Borok, Z., Kim, K.-J., & Crandall, E. D. (2010). Mechanisms of Alveolar Epithelial Translocation of a Defined Population of Nanoparticles. American Journal of Respiratory Cell and Molecular Biology, 42(5), 604‑614. DOI: 10.1165/rcmb.2009-0138oc.
22. Puris, E., Saveleva, L., Gorova, V., Vartiainen, P., Kortelainen, M., Lamberg, H., Sippula, O., Malm, T., Jalava, P. I., Auriola, S., & Kanninen, K. M. (2022). Air Pollution Exposure Increases ABCB1 and ASCT1 Transporter Levels in Mouse Cortex. Environmental Toxicology and Pharmacology, 96, 104003. DOI: 10.1016/j.etap.2022.104003.
23. Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., & Cox, C. (2004). Translocation of Inhaled Ultrafine Particles to the Brain. Inhalation Toxicology, 16, 437–445.
24. Tian, L., Shang, Y., Chen, R., Bai, R., Chen, C., Inthavong, K., & Tu, J. (2019). Correlation of regional deposition dosage for inhaled nanoparticles in human and rat olfactory. Particle and Fibre Toxicology, 16, 6.
25. Jumpponen, M. (2017). Occupational exposure to components of biomass-fired power plant ash. Publications of the University of Eastern Finland. Dissertations in Forestry and Natural Sciences, 285. 2017.
26. Zbirnyk pokaznykiv emisii (pytomykh vykydiv) zabrudniuiuchykh rechovyn v atmosferne povitria riznymy vyrobnytstvamy [Compendium of indicators of emissions (specific emissions) of pollutants into atmospheric air by various industries]. Approved by the Ministry of Ecology and Natural Resources of Ukraine (2014). Ukrainian Scientific Center of Technical Ecology. URL: http://online.budstandart.com/ua/catalog/doc-page?id_doc=53404. [in Ukrainian]
27. Perea-Moreno, M.-A., Manzano-Agugliaro, F., & Perea-Moreno, A.-J. (2018). Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings. Sustainability, 10, 3407. DOI: 10.3390/su10103407.