BIOCONVERSION OF MEAT PROCESSING FATTY WASTE USING YEAST Y.LIPOLYTICA
Madani Maria
Odessa National Technological University, Odesa, Ukraine
https://orcid.org/0000-0001-9386-7364
DOI: 10.52363/2522-1892.2023.2.4
Keywords: aeration tank-mixer, secondary settling tank, waste liquid, biological treatment, activated sludge, regenerator, environmental protection
Abstract
A technology for the utilization of fat waste from meat processing based on a combination of physical and chemical effects and biological oxidation is proposed. The main chemical and microbiological parameters of the fat-containing phase of effluents of meat processing enterprises were determined. It was established that in the process of holding waste in a sludge collector (1…13 days) as a result of the vital activity of autochthonous microorganisms, the fat content decreases from 87 % to 58 %. The dominant organism of the autochthonous microflora of the waste is the fungus Geotrichum.sp. It was established that Yarrowia lipolytica yeast, selected for the substrate, is the most promising fat biodestructor.
A method of pretreatment of the fat-containing solid phase of fatty effluents has been developed, which increases the efficiency of their consumption by the Yarrowia lipolytica culture. The basis of the method is the ultrasonic dispersion of fat mass, as a result of which the bioavailability of the substrate increases and, as a result, the specific growth rate and yield of microbial biomass increases by 11 % and 30 %, respectively.
The methods of seed preparation are proposed, which allow to increase the efficiency of the main process according to the indicators: biomass yield (by 10.1 %); specific growth rate (from 0.20 to 0.26 h–1); protein content (by 16.7 %). The methods include the selection (5…7 passages) of high-performance clones, which is carried out in the directions of increasing affinity to the substrate and stress resistance to the action of hydrogen peroxide (2.5 g/l).
The obtained results showed that when using yeast Yarrowia lipolytica for the biodestruction of fatty effluents, it is advisable to use both top-up and continuous methods of cultivation, which do not lead to significant changes in the quality of the obtained biomass. Yeast leaching was not observed in the top-up mode at 24 % withdrawal of culture liquid per hour, and in the case of continuous mode - at a flow rate of 0.24 h–1, while the protein and lipid content was 42.7 % and 7.2 %, 41.4 % and 7.9 %, respectively.
References
1. Bal-Prylypko, L., Nikolaienko, M., & Cherednichenko, O. (2022). Aktualni problemy miasopererobnoi haluzi ta praktychni pidkhody do vdoskonalennia retseptur kovbasnykh vyrobiv [Actual problems of the meat processing industry and practical approaches to improving the recipes of sausage products]. Prodovolchi resursy, 10(19), 26-37. DOI: 10.31073/foodresources2022-19-03. [in Ukrainian]
2. Anil, K. A. (2017). Food processing by‐products and their utilization. Food processing by‐products and their utilization, 2, 1-10.
3. Kuzmin, O. V., & Isaienko, V. M. (2020). Development of effective technologies for waste processing of the food industry, 432-450.
4. Kovalchuk, V. A. (2010). Vysokoproduktyvni biookysliuvachi v systemakh ochystky stichnykh vod pidpryiemstv miasnoi ta molochnoi promyslovosti [High-performance biooxidizers in wastewater treatment systems of meat and dairy enterprises]. Naukovyi visnyk budivnytstva, 60, 247-251. [in Ukrainian]
5. Asgharnejad, H., Nazloo, E. K., Larijani, M. M., Hajinajaf, N., & Rashidi, H. (2021). Comprehensive review of water management and wastewater treatment in food processing industries in the framework of water‐food‐environment nexus. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4779-4815.
6. Yulevych, O. I., Kovtun, S. I., & Hyl, M. I. (2012). Biotekhnolohiia [Biotechnology]. Mykolaiv : MDAU, 476. [in Ukrainian]
7. Paska, M. Z. (2010). Tekhnolohiia tvarynnykh zhyriv: navch. pos. [Technology of animal fats: a textbook]. Lviv: LKT LNUVM ta BT im. S.Z. Hzhytskoho, 135. [in Ukrainian]
8. Kempers, P. (2009). Lipid biotechnology: Industrially relevant production processes. European journal of Science and technology, 111(7), 627-645. DOI: 10.1002/ejlt.200900057.
9. Kovalchuk, V. A. (2015). Tvarynnytstvo ta miasopererobka: suchasni metody ochystky stichnykh vod [Animal husbandry and meat processing: modern methods of wastewater treatment]. Visnyk Odeskoi derzhavnoi akademii budivnytstva ta arkhitektury, 59, 194-199. [in Ukrainian]
10. Shestopalov, O. V., Hetta, O. S., & Rykusova, N. I. (2019). Suchasni metody ochyshchennia stichnykh vod kharchovoi promyslovosti [Modern methods of wastewater treatment in the food industry]. Naukovo-praktychnyi zhurnal. Ekolohichni nauky, 2(25), 20-27. DOI: 10.32846/2306-9716-2019-2-25-4. [in Ukrainian]
11. Bazar, O. (2020). Utylizatsiia vidkhodiv miasopererobnoi promyslovosti [Waste disposal of meat processing industry]. Pryrodnychi ta humanitarni nauky. Aktualni pytannia, materialy Ⅲ Vseukr. stud. nauk.-tekhn. konf. [Natural and humanitarian sciences. Current issues, Proceedings of the 3th All-Ukrainian student Science and Technology Conference]. Ternopil, 22. [in Ukrainian]
12. Bilal, M., & Iqbal, H. M. N. (2019). Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities. Food Research International, 123, 226-240. DOI: 10.1016/j.foodres.2019.04.066.
13. Kumar, A., Gudiukaitė, R., Gricajeva, A., Sadauskas, M., Malunavicius, V., Kamyab, H., Sharma, S., Sharma, T., & Pant, D. (2020). Microbial lipolytic enzymes – promising energy-efficient biocatalysts in bioremediation. Energy, 192, 127-142. DOI: 10.1016/j.energy.2019.116674.
14. Lu, H., Zhang, G., He, S., Peng, C., & Ren, Z. (2020). Production of photosynthetic bacteria using organic wastewater in photobioreactors in lieu of a culture medium in fermenters: From lab to pilot scale. Journal of Cleaner Production, 259, 158-163. DOI: 10.1016/j.jclepro.2020.120871.
15. Sepulveda-Munoz, C. A., de Godos, I., Puyol, D., & Muñoz, R. (2020). A systematic optimization of piggery wastewater treatment with purple phototrophic bacteria. Chemosphere, 253, 134-145. DOI: 10.1016/j.chemosphere.2020.126621.
16. Vivek, P., & Sanvidhan, G. (2018). Effect of lipase from different source on high fat content wastewater of dairy industry. Indian Journal of Biotechnology, 17(2), 244-250. DOI: nopr.niscair.res.in/handle/123456789/45100.
17. Chandra, P., Enespa, Singh, R., & Arora, P. K. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories, 2, 2-42. DOI: 10.1186/s12934-020-01428-8.
18. Krusir, H. V., & Chernyshova, O. O. (2016). Doslidzhennia sumisnoi utylizatsii rysovoi luzghy ta vidkhodiv miasopererobnykh vyrobnytstv metodom anaerobnoho zbrodzhuvannia [Research on the combined utilization of rice husk and waste from meat processing plants by the method of anaerobic fermentation]. Grain Products and Mixed Fodders, 62(2), 23-29. [in Ukrainian]
19. Novik, G., Meerovskaya, O., & Savich, V. (2017). Waste Degradation and Utilization by Lactic Acid Bacteria: Use of Lactic Acid Bacteria in Production of Food Additives. Bioenergy and Biogas, 1, 105-146. DOI: 10.5772/intechopen.69284.
20. Holub, N. B., Shynkarchuk, M. V., & Kozlovets, O. A. (2018). Shliakhy pidvyshchennia produkuvannia biohazu pry zbrodzhuvanni zhyrovmisnykh vidkhodiv shkirianoho vyrobnytstva [Ways to increase biogas production during the fermentation of fat-containing waste from leather production]. Visnyk Khmelnytskoho natsionalnoho universytetu, 2(259), 103-107. [in Ukrainian]
21. Hatsenko, K. V., & Voloshyn, M. D. (2019). Tekhnolohiia otrymannia biohazu na osnovi kharchovykh vidkhodiv [Technology of biogas production on the basis of food waste]. Zbirnyk naukovykh prats Dnipropetrovskoho tekhnichnoho universytetu, 1(34), 131-136. DOI: 10.31319/2519-2884.34.2019.26. [in Ukrainian]
22. Pylypenko, O. (2017). Rozvytok kharchovoi promyslovosti Ukrainy [Development of the food industry of Ukraine]. Naukovi pratsi NUKhT, 23(3), 15-25. [in Ukrainian]
23. Zinjarde, S. S., Pant, A., & Deshpande, M. V. (1998). Dimorphic transition in Yarrowia lipolytica isolated from oil-polluted seawater. Mycological Research, 10, 553-558. DOI: 10.1017/S0953756297005418.
24. De Felice, B., Pontecorvo, G., & Carfagna, М. (1997). Degradation of waste waters from olive oil mills by Yarrowia lipolytica ATCC 20255 and Pseudomonas putida. Acta Biotechnologica, 17, 231-239. DOI: 10.1002/abio.370170306.
25. Scioli, C., & Vollaro, L. (1997). The use of Yarrowia lipolytica to reduce pollution in olive mill wastewaters. Water Research, 31(10), 2520-2524. DOI: 10.1016/S0043-1354(97)00083-3.
26. Madani, M. M., Shevchenko, R. I., & Harkovych, O. L. (2021). Biokonversiia zhyrovmisnoi fazy stokiv rybopererobnykh pidpryiemstv u kormovu dobavku [Bioconversion of the fat-containing phase of effluents of fish processing enterprises into a feed additive]. Visnyk ahrarnoi nauky Prychornomoria, 3(111), 54-66. DOI: 10.31521/2313-092X/2021-3(111)-7. [in Ukrainian]
27. Aleksandrova, K. V., Shkoda, O. S., & Vasyliev, D. A. (2015). Vyznachennia aktyvnosti fermentiv v biolohichnykh seredovyshchakh. Odynytsi aktyvnosti fermentiv. Enzymopatii [Determination of enzyme activity in biological environments. Enzyme activity units. Enzymopathies]. Zaporizhzhia, ZDMU, 45 [in Ukrainian]
28. F. J., Galanakis, C. M., Esteve, M. J., Frigola, A., & Vorobiev, E. (2015). Potential use of pulsed electric technologies and ultrasounds to improve the recovery of high-added value compounds from blackberries. Journal of Food Engineering, 167, 38-44. DOI: 10.1016/j.jfoodeng.2015.02.001.