DEVELOPMENT OF A REACTOR FOR LOW-TEMPERATURE CATALYTIC REDUCTION OF NITROGEN OXIDE EMISSIONS AT NITROGEN-FERTILIZER ENTERPRISES
Babakin Vadim
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
https://orcid.org/0000-0002-7157-0241
Vekshyn Vitalii
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
https://orcid.org/0000-0003-2834-8773
DOI: 10.52363/2522-1892.2023.2.5
Keywords: oxides, emissions, nitrogen, reduction, catalyst, anodizing, kinetics
Abstract
The article presents the development of a more efficient use of the processes of catalytic reduction of nitrogen oxides of gas emissions for industrial use. The advantages of plate catalyst blocks with a deposited active substance in comparison with industrial granular aluminum-vanadium catalysts are presented. Chemical and kinetic regularities of this process are shown. It is noted that the use of plate deposited catalysts based on noble metals is a more effective means of reducing nitrogen oxides than granular ones due to the presence of low hydraulic resistance and increased activity. On the basis of experimental data of laboratory and pilot studies of the developed catalyst obtained by impregnating the applied metal carrier based on TiO2 with salts of platinum group metals, physicochemical and kinetic calculations of the process of reduction of nitrogen oxides using ammonia were carried out. Graphical dependencies of the activity of the developed catalysts on the process temperature and volume velocity are given. The optimal values of these indicators have been determined. It is shown that the effect of temperature is explained by the growth of the reaction rate constant in proportion to the temperature according to Arrhenius' law, and the effect of the volumetric velocity is associated with a change in the duration of contact of the reacting components with the active surface of the catalyst. The calculation of the Reynolds criterion was carried out, which showed that this process in the conditions of industrial technologies is characteristic of the laminar regime. It is noted that the use of the developed catalyst in production provides an expansion of the temperature range of the emission purification process, it is more suitable for operation in industry in accordance with the determined optimal conditions of its application.
References
1. Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., & Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1(10–97), 29–35. DOI: 10.15587/1729-4061.2019.155027.
2. Pehchevski, D. (2020). The impacts of Ukraine’s energy sector on air quality. CEE Bankwatch Network, Ecodija, Briefing, 19.11.2020, 8.
3. Vambol, S., Vambol, V., Kondratenko, O., Suchikova, Y., & Hurenko, O. (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3(10–87), 63–73. DOI: 10.15587/1729-4061.2017.102314.
4. Savenets, M., Osadchyi, V., Komisar, K., Zhemera, N., & Oreshchenko, A. (2023). Remotely visible impacts on air quality after a year-round full-scale Russian invasion of Ukraine. Atmospheric Pollution Research, 14(11), 13. DOI: 10.1016/j.apr.2023.101912.
5. Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Kameneva, I., Taraduda, D., Sobyna, V., Sokolov, D., Dement, M., & Yatsyshyn, T. (2020). Risk assessment for the population of Kyiv, Ukraine as a result of atmospheric air pollution. Journal of Health and Pollution, 10(25), 1–11. DOI: 10.5696/2156-9614-10.25.200303.
6. Bohovic, R., Hrnčiar, M., Muroň, M., Chytrý, J., Skalský, M., Černochová, M., Angurets, O., & Labohý, J. (2023). Air Pollution in Ukraine as seen from Space: The Effects of the War. World from Space, 2023. 28 р.
7. Mykhailova, Ye. O. (2019). Mozhlyvi sposoby ochyshchennia hazovykh vykydiv vid oksydiv nitrohenu v umovakh vyrobnytstva kaltsynovanoi sody [Possible ways to purify gas emissions from nitrogen oxides in the production of soda ash]. Ekolohichna bezpeka: problemy i shliakhy vyri¬shennia: XV mizhnar. nauk.-prakt. konf., 9-13 ver. 2019 r.: zb. nauk. st, 227-231. [in Ukrainian]
8. Tkachenko, S. Y., & Bodnar, L. A. (2014). Ekolohichni aspekty vyrobnytstva enerhii [Environmental aspects of energy production]. Vinnytsia: VNTU, 80. [in Ukrainian]
9. Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., & Poberezhna, L. (2018). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64(4), 186–195. DOI: 10.6001/energetika.v64i4.3893.
10. Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes. (2014). De Jong, W., & Van Ommen, J. R. (eds.). American Institute of Chemical Engineers, Inc., 370. DOI: 10.1002/9781118916643.
11. Bradford, M., Grover, R., & Paul, P. (2002). Controlling NOx Emissions. Part 2. Chemical engineering progress, 98(4), 38-42.
12. Qin, Z., Hong-xia, Q., & Fu-ming, X. (2001). Removal of NOx by selective reduction with V2O5/TiO2, Journal of Fuel Chemistry and Technology, 29(4), 378-380.
13. Tiulpynov, A. D., & Kliachenko, T. P. (2000). Snizhenie zahriaznenija atmosfery hazovymi vybrosami promyshlennykh predprijatij [Reduction of air pollution by gas emissions from industrial enterprises]. Chemical industry of Ukraine, 1-2, 100-103. [in Russian]
14. Cao, G., Yang, L., Yang, Y., Feng, L., Zhang, X., Li, J., & Liu, B. (2021). Low-temperature selective catalytic reduction of NOx with NH3 over in-situ grown MnOx-Fe2O3/TiO2/Ti monolithic catalyst. Journal of Alloys and Compounds, 6(19), 12801–12812. DOI: 10.1016/j.jallcom.2022.168481.
15. Wang, Y., Li, J., Zhang, J., Zhang, J., Zhai, D., Qian, G., Liu, Y., & Zuo, C. (2019). Advantages of bimetallic nitric oxide reduction catalysts consisting of heavy metals rich in hazardous wastes. Journal of Cleaner Production, 237, 117834. DOI: 10.1016/j.jclepro.2019.117834.
16. Lobojko, A. Ya., Vekshin, V. A., Markova, N. B., Vorozhbiyan M. I., & Shapareva, L. P. (2010). [Issledovanie vliyaniya tehnologii prigotovleniya katalizatora na raspredelenie kataliticheski aktivnogo veshestva po poverhnosti nositelya] Investigation of the influence of catalyst preparation technology on the distribution of catalytically active substance on the surface of the carrier]. Catalysis. Tekhnolohiia katalizatoriv i sorbentiv, 179(1), 283–291. [in Russian]
17. Pérez-Mayoral, E., Matos, I., Bernardo, M., Ventura, M., & Fonseca, I. M. (2020). Carbon-Based Materials for the Development of Highly Dispersed Metal Catalysts: Towards Highly Performant Catalysts for Fine Chemical Synthesis. Catalysts, 10(12), 1407. DOI: 10.3390/catal10121407.
18. Vambol, S., Bogdanov, I., Vambol V., Suchikova Y., Kondratenko, O., Hurenko, O., & Onishchenko, S. (2017). Research into regularities of pore formation on the surface of semiconductors. Eastern-European Journal of Enterprise Technologies, 3(5–87), 37–44. DOI: 10.15587/1729-4061.2017.104039.
19. Vambol, S., Bogdanov, I., Vambol, V., Suchikova, Y., Lopatina, H., & Tsybuliak, N. (2017). Research into effect of electrochemical etching conditions on the morphology of porous gallium arsenide. Eastern-European Journal of Enterprise Technologies, 6(5–90), 22–31. DOI: 10.15587/1729-4061.2017.118725.
20. Vambol, S., Bohdanov, I., Vambol, V., Suchikova Y., Kondratenko, O., Nestorenko, T., & Onyschenko, S. (2017). Formation of filamentary structures of oxide on the surface of monocrystalline gallium arsenide. Journal of Nano- and Electronic Physics, 9(6), 06016. DOI: 10.21272/jnep.9(6).06016.
21. Tulskyi, H. H., Liashok, L. V., Shevchenko, H. S., Vasilchenko, A. V., & Stelmakh, O. A. (2019). Synthesis of functional nanocomposites based on aluminum oxide. Functional Materials, 26 (4), 718-722.
22. Li, W., Liu, Y., Mu, M., Ding, F., Liu, Z., Guo, X., & Song, C. (2019). Organic acid-assisted preparation of highly dispersed Co/ZrO2 catalysts with superior activity for CO2 methanation. Applied Catalysis B: Environmental, 254, 531–540. DOI: 10.1016/j.apcatb.2019.05.028.
23. Vekshin, V. A., Vorozhbiyan, M. I., Lobojko, A.Ya., Markova, N. B., & Kobzev, A. V. (2003). Razrabotka kataliticheskoj sistemy na metallicheskom nositele dlya ochistki vyhlopnyh gazov ot oksidov azota [Development of a catalytic system on a metal carrier for the purification of exhaust gases from nitrogen oxides]. Voprosy himii i himicheskoj tehnologii, 2, 51-53. [in Russian]
24. Vorozhbiyan, M. I., Pinegin, V. I., Bagrova I. V., & Vekshin, V.A. (2002). Razrabotka metallicheskogo nositelya kataliticheskoj sistemy s zadannymi harakteristikami [Development of a metal carrier of a catalytic system with specified characteristics]. Visnyk NTU «KhPI», 17, 49-52. [in Russian]
25. Pilipenko, A., Pancheva, H., Deineka, V., Vorozhbiyan, R., & Chyrkina, M. (2018). Formation of oxide fuels on VT6 alloy in the conditions of anodial polarization in solutions H2SО4. Eastern-European Journal of Enterprise Technologies, 3(6–93), 33–38. DOI: 10.15587/1729-4061.2018.132521.
26. Vambol, S., Vambol, V., Suchikova, Y., Bogdanov, I., & Kondratenko, O. (2018). Investigation of the porous GaP layers’ chemical composition and the quality of the tests carried out. Journal of Achievements in Materials and Manufacturing Engineering, 86(2), 49–60. DOI: 10.5604/01.3001.0011.8236.
27. Vekshyn, V. A., & Grabovetskaya, E. R. (2019). Kinetics of selective reduction of nitrogen oxides on a cellular platinum catalys. Voprosy khimii i khimicheskoi tekhnologii, 2, 79-86. DOI: 10.32434/0321-4095-2019-123-2-79-86.