ENVIRONMENTAL AND HEALTH IMPACTS OF AGRICULTURAL WASTE COMBUSTION FOR BIOENERGY: A TOXICITY AND EMISSION REVIEW

PDF(ENGLISH)

 

Oskina Maryna

Ukrainian Scientific Research Institute of Ecological ProblemsKharkiv, Ukraine

https://orcid.org/0000-0002-7943-8237

 

Honcharenko Ihor

Sumy State UniversitySumy, Ukraine

https://orcid.org/0000-0002-5205-7506

 

Ryzhchenko Olga

National University of Civil Protection of Ukraine, Cherkasy, Ukraine

https://orcid.org/0000-0003-1693-6121

 

DOI: 10.52363/2522-1892.2024.2.4

 

Key words: agricultural waste combustion, polycyclic aromatic hydrocarbons, emission profiles, bioenergy, environmental health

 

Abstract

This study examines the environmental and health impacts caused by the release of polycyclic aromatic hydrocarbons (PAHs) from the combustion of biomass and agricultural waste. Today, bioenergy plays a crucial role in global energy systems, accounting for 70 % of renewable energy consumption, 9.5 % of total primary energy supply, and 13 % of global gross final energy consumption. However, environmental pollution remains one of the greatest challenges of the 21st century, with serious implications for human health, biodiversity, and climate change. PAHs, released during the incomplete combustion of organic fuels, are particularly concerning due to their carcinogenic and mutagenic properties.

This review aims to evaluate the emissions of PAHs during biomass combustion, with a focus on fuel types and combustion conditions. It synthesizes data from over 30 contemporary scientific sources, comprehensively analysing PAH formation and distribution in flue gases, and identifies the key factors influencing these emissions.

The research reveals that PAH emissions vary significantly depending on the type of biomass, combustion conditions, and the control measures employed. Open burning of agricultural residues generates much higher PAH concentrations compared to controlled combustion in stoves or furnaces. The analysis assumes consistent data reporting across studies and acknowledges that real-world conditions may differ from laboratory settings, potentially affecting emission levels.

The findings underscore the importance of implementing effective emission control strategies to reduce environmental and health risks, particularly in regions like Ukraine that rely heavily on biomass as an energy source. By addressing a critical gap in the literature, this review enhances understanding of the long-term impacts of bioenergy on environmental health and sustainability and advocates for updating Ukrainian regulatory legislation with modern methodological procedures.

 

 

 

References

  1. Andreae, M. O. (2019). Emission of trace gases and aerosols from biomass burning an updated assessment. Atmospheric Chemistry and Physics, 19(13), 8523–8546, DOI: 10.5194/acp-19-8523-2019.

  2. Bond, T. C., Doherty, S. J. Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M.C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G. & Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), 5380–5552, DOI: 10.1002/jgrd.50171.

  3. Liang, Yu, Jen, С.N., Weber, R.J., Misztal, P.K. & Goldstein, A.H. (2021). Chemical composition of PM2.5 in October 2017 Northern California wildfire plumes. Atmospheric Chemistry and Physics, 21(7), 5719–5737, DOI: 10.5194/acp-21-5719-2021.

  4. Jiang, Y., Lu, Z., Liu, X., Qian, Y., Zhang, K., Wang, Y., & Yang, X.-Q. (2016). Fire Influences on Atmospheric Composition; Impacts of global open-fire aerosols on direct radiative cloud, and surface-albedo effects simulated with CAM5. Atmospheric Chemistry and Physics, 16(23), 14805–14824, DOI: 10.5194/acp-16-14805-2016.

  5. Harrison, S. P., Bartlein, P. J., Brovkin, V., Houweling, S., Kloster, S., & Prentice, I. C. (2018). The biomass burning contribution to climate-carbon-cycle feedback. Earth System Dynamics, 9(2), 663–677, DOI: 10.5194/esd-9-663-2018.

  6. Lasslop, G., Coppola, A. I., Voulgarakis, A., Yue, Ch., & Veraverbeke, S. (2019). Influence of Fire on the Carbon Cycle and Climate. Current Climate Change Reports, 5(2), 112–123, DOI: 10.1007/s40641-019-00128-9.

  7. Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T., Marlier, M., DeFries, R. S., Kinney, P., Bowman, D. M. J. S., & Brauer M. (2012). Estimated Global Mortality Attributable to Smoke from Landscape Fires. Environment Health Perspectives, 120(5), 695–701, DOI: 10.1289/ehp.1104422.

  8. Karanasiou, A., Alastuey, A., Amato, F., Renzi, M., Stafoggia, M., Tobias, A., Reche, C., Forastiere, F., Gumy, S., Mudu, P., & Querol, X. (2021). Short-term health effects from outdoor exposure to biomass burning emissions: A review. Science of The Total Environment, 781, 146739, DOI: 10.1016/j.scitotenv.2021.146739.

  9. Chen, Y.-W., Cheng, Y.-H., & Hsu, C.-Y. (2023). Characterization of the sources and health risks of polycyclic aromatic hydrocarbons in PM2.5 and their relationship with black carbon: A case study in northern Taiwan. Environmental Pollution, 122427. DOI: 10.1016/j.envpol.2023.122427.

  10. Dandajeh, H. A., Talibi, M., Ladommatos, N., & Hellier, P. (2019). Influence of combustion characteristics and fuel composition on exhaust PAHs in a compression ignition engine. Energies, 12(13), 2575.

  11. Ma, L., Mao, Q., Wang, C.A., Duan, Z., Chen, M., Yang, F., & Che, D. (2022). Investigation of pyrolysis and mild oxidation characteristics of tar-rich coal via thermogravimetric experiments. ACS omega, 7(29), 25613–25624.

  12. Hrodmarsson, H. R., Bouwman, J., Tielens, A. G., & Linnartz, H. (2022). Similarities and dissimilarities in the fragmentation of polycyclic aromatic hydrocarbon cations: A case study involving three dibenzopyrene isomers. International Journal of Mass Spectrometry, 476, 116834.

  13. Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., & Bhaskar, T. (2017). Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource technology, 237, 57–63.

  14. Shukla, B., & Koshi, M. (2011). Comparative study on the growth mechanisms of PAHs. Combustion and Flame, 158(2), 369–375.

  15. Machala, M., Vondráček, J., Bláha, L., Ciganek, M., & Neča, J. (2001). Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 497(1‑2), 49–62.

  16. Lighty, J. S., Veranth, J. M., & Sarofim, A. F. (2000). Combustion aerosols: factors governing their size and composition and implications to human health. Journal of the Air & Waste Management Association, 50(9), 1565–1618.

  17. Janvijitsakul, K., & Kuprianov, V. I. (2008). Major gaseous and PAH emissions from a fluidized-bed combustor firing rice husk with high combustion efficiency. Fuel processing technology, 89(8), 777–787.

  18. Dilger, M., Orasche, J., Zimmermann, R., Paur, H. R., Diabaté, S., & Weiss, C. (2016). Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc. Archives of toxicology, 90, 3029–3044.

  19. Richter-Brockmann, S., & Achten, C. (2018). Analysis and toxicity of 59 PAH in petrogenic and pyrogenic environmental samples including dibenzopyrenes, 7H-benzo [c] fluorene, 5-methylchrysene and 1-methylpyrene. Chemosphere, 200, 495–503.

  20. Shahsavari, E., Schwarz, A., Aburto-Medina, A., & Ball, A. S. (2019). Biological degradation of polycyclic aromatic compounds (PAHs) in soil: a current perspective. Current Pollution Reports, 5, 84–92.

  21. Zhang, H., Zhang, X., Wang, Y., Bai, P., Hayakawa, K., Zhang, L., & Tang, N. (2022). Characteristics and influencing factors of polycyclic aromatic hydrocarbons emitted from open burning and stove burning of biomass: A brief review. International journal of environmental research and public health, 19(7), 3944.

  22. Hartner, E., Gawlitta, N., Gröger, Th., Orasche, J., & Czech, H. (2024). ACS. Earth and Space Chemistry, 8 (3), 533546, DOI: 10.1021/acsearthspacechem.3c00301.

  23. Bragato, M., Joshi, K., Carlson, J. B., Tenório, J. A., & Levendis, Y.A. (2012). Combustion of coal, bagasse and blends thereof: Part II: Speciation of PAH emissions. Fuel, 96, 51–58.

  24. Rajeev, P., Shukla, P. C., Singh, G. K., Das, D., & Gupta, T. (2023). Assessment of entrainment of key PAHs emanating from major combustion sources into the ambient air. Fuel, 347, 128430.

  25. Dyke, P. H. (2002). PCB and PAH releases from incineration and power generation processes. UK: Environment Agency. URL: https://assets.publishing.service.gov.uk/media/5a7b9746ed915d41476215e7/sp4-052-tr-e-e.pdf.

  26. Väätäinen, S., Leskinen, J., Lamberg, H., Koponen, H., Kortelainen, M., Sippula, O., & Tissari, J. (2023). The effects of air staging and combustion air control on black carbon and other particulate and gaseous emissions from a sauna stove. Fuel, 331(1), 125769. DOI: 10.1016/j.fuel.2022.125769.

  27. Rinta-Kiikka, H., Dahal, K., Louhisalmi, J., Koponen, H., Sippula, O., Krpec, K., & Tissari, J. (2024). The Effect of Wood Species on Fine Particle and Gaseous Emissions from a Modern Wood Stove. Atmosphere, 15(7), 839. DOI: 10.3390/atmos15070839.

  28. Shen, G., Xue, M., Wei, S., Chen, Y., Wan, B., Wang, R., Lv, Y., Shen, H., Li, W., Zhang, Y., Huang, Y., Chen, H., Wei, W., Zhao, Q., Li, B., Wu, H., & Tao, S. (2013). Emissions of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons from indoor corn straw burning in normal and controlled combustion conditions. Journal of Environmental Sciences, 25(10), 20722080. DOI: 10.1016/S1001-0742(12)60249-6.

  29. Janvijitsakul, K., & Kuprianov, V. I. (2008). Major gaseous and PAH emissions from a fluidized-bed combustor firing rice husk with high combustion efficiency. Fuel Processing Technology, 89(8), 777787. DOI: 10.1016/j.fuproc.2008.01.013.

  30. Fakinlea, B. S., Odekanle, E. L., Ike-Ojukwua, C., Sonibar, O. O., Falowo, O. A, Olubiyo, F. W., Oke, D. O, & Aremu, C. O. (2022). Quantification and health impact assessment of polycyclic aromatic hydrocarbons (PAHs) emissions from crop residue combustion. Heliyon, 8(3). DOI: 10.1016/j.heliyon.2022.e09113.

  31. Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian journal of petroleum, 25(1), 107–123.

  32. Mallah, M. A., Changxing, L., Mallah, M. A., Noreen, S., Liu, Y., Saeed, M., & Zhang, Q. (2022). Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. Chemosphere, 296, 133948.

  33. Pardo, M., Li, C., Fang, Z., Levin-Zaidman, S., Dezorella, N., Czech, H., & Rudich, Y. (2021). Toxicity of water-and organic-soluble wood tar fractions from biomass burning in lung epithelial cells. Chemical research in toxicology, 34(6), 1588–1603.

  34. Perera, F. P., Poirier, M. C., Yuspa, S. H., Nakayama, J., Jaretzki, A., Curnen, M. M., & Weinstein, I. B. (1982). A pilot project in molecular cancer epidemiology: determination of benzo [a] pyrene—DNA adducts in animal and human tissues by immunoassays. Carcinogenesis, 3(12), 1405–1410.

  35. Pannu, A. K., & Singla, V. (2020). Naphthalene toxicity in clinical practice. Current drug metabolism, 21(1), 63–66.

  36. Singh, T., Biswal, A., Mor, S., Ravindra, K., Singh, V., & Mor, S. (2020). A high-resolution emission inventory of air pollutants from primary crop residue burning over Northern India based on VIIRS thermal anomalies. Environmental Pollution, 266, 115132.

  37. Ravindra, K., Singh, T., & Mor, S. (2019). Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. Journal of cleaner production, 208, 261273.

  38. Majumdar, D., Rajaram, B., Meshram, S., & Chalapati Rao, CV. (2012). PAHs in Road Dust: Ubiquity, Fate, and Summary of Available Data. Critical Reviews in Environmental Science and Technology, 42, 11911232. DOI: https://doi.org/10.1080/10643389.2011.556550.

  39. Anyahara, J. N. (2021). Effects of Polycyclic Aromatic Hydrocarbons (PAHs) on the environment: A systematic review. International Journal of Advanced Academic Research, 7(3).

  40. Singh, A., & Dey, S. (2012). Influence of aerosol composition on visibility in megacity Delhi. Atmospheric Environment, 62, 367–373.