TECHNIQUE OF LAND RECULTIVATION OF PLACES OF AMMUNITION DISPOSAL AND DESTRUCTION

PDF(ENGLISH)

 

Didovets Yurij

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0002-0674-3900

 

DOI: 10.52363/2522-1892.2024.1.9

 

Keywords: land recultivation, ammunition disposal and destruction, explosion hazard, monitoring, demining, phytoremediation

 

Abstract

The relevance of the research and the need to develop methods that allow restoring the lands of the ammunition disposal and destruction sites during the application of measures for their recultivation are shown. The criteria for evaluating the safety level of the process of recultivation of the lands of the ammunition disposal and destruction sites based on the use of a regulatory approach and significant indicators were determined, namely: the probability of an explosion, the amount of excessive pressure in the air shock wave, and the level of degradation of the lands of the ammunition disposal and destruction sites.

For the first time the technique of land recultivation of places of ammunition disposal and destruction was developed. It includes three stages: Stage 1 – monitoring of land of places of ammunition disposal and destruction based on unmanned aviation monitoring system; Stage 2 – demining of land of ammunition disposal and destruction by specialized pyrotechnic units of the State Emergency Service of Ukraine using the results of the monitoring conducted at Stage 1; Stage 3 – biological treatment of land of the ammunition disposal and destruction using the phytoremediation method.

 

 

References

1. Trebin, M. (2015). Війни в історії людства та їхні наслідки: уроки для України [Wars in the history of mankind and their consequences: lessons for Ukraine]. Visnuk of the Lviv University. Series Philos.-Political Studies, 6, 89-99. [in Ukrainian]

2. UNEP (2007). Lebanon Post Conflict Environmental Assessment. URL: http://postconflict.unep.ch/publications/UNEP_Lebanon.pdf.

3. UNEP. (2023). A full overview on UNEP’s environmental assessments in IRAQ. URL: http://www.unep.org/disastersandconflicts/Publications/IraqPublications/tabid/54725/Default.aspx.

4. UNEP. (2006). Ground Contamination Assessment Report Military Waste Storage Site, Astana, Afghanistan. URL: http://postconflict.unep.ch/publications/afghanistan_cont.pdf.

5. UNDAC. (2012). Environmental Emergency Assessment Ammunitions Depot Explosions Brazzaville. URL: https://ochanet.unocha.org/p/Documents/Congo_UNDAC_Environment_Emerg_Assmt%20Final.pdf.

6. Vidosavljević, D., Puntarić, D., Gvozdić, V., Jergović, M., Miškulin, M., Puntarić, I., Puntarić, E. & Šijanović, S. (2013). Soil contamination as a possible long-term consequence of war in Croatia. ActaAgriculturae Scandinavica, Section B - Soil & Plant Science, 63(4), 322-329.

7. Manduca, P., Naim, A., & Signoriello, S. (2014). Specific Association of Teratogen and Toxicant Metals in Hair of Newborns with Congenital Birth Defects or Developmentally Premature Birth in a Cohort of Couples with Documented Parental Exposure to Military Attacks: Observational Study at Al Shifa Hospital, Gaza, Palestine. International Journal of Environmental Research and Public Health, 11(5), 5208-5223.

8. PAX. (2020). Amidst the debris… A desktop study on the environmental and public health impact of Syria’s conflict. URL: https://paxforpeace.nl/wp-content/uploads/sites/2/import/import/pax-report-amidst-the-debris-syria-web.pdf.

9. Regional Environmental Center for Central and Eastern Europe. (1999). Assessment of the Environmental Impact of Military Activities During the Yugoslavia Conflict. URL: https://reliefweb.int/attachments/159eb43b-6572-3263-acc0-6e9bf7a1727d/Assessment%20of%20the%20Environmental%20Impact%20of%20Military%20Activities.pdf.

10. Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98, 2243-2257.

11. Kim, K. H., Ebinghaus, R., Schroeder, W. H., Blanchard, P., Kock, H. H., Steffen, A., Froude, F. A., Kim, M. Y., Hong, S., & Kim, J. H. (2005). Atmospheric mercury concentrations from several observatory sites in the northern hemisphere. Journal of Atmospheric Chemistry, 50(1), 1-24.

12. Kumar, P., Deep, A., Kim, K. H., & Brown, R. J. C. (2015). Coordination polymers: opportunities and challenges for monitoring volatile organic compounds. Progress in Polymer Science, 45, 102-118.

13. Nyarko, B. J. B., Dampare, S. B., Serfor-Armah, Y., Osae, S., Adotey, D., & Adomako, D. (2008). Biomonitoring in the forest zone of Ghana: the primary results obtained using neutron activation analysis and lichens. International Journal of Environment and Pollution, 32, 467-476.

14. Ekmekyapar, F., Sabudak, T., & Seren, G. (2012). Assessment of heavy metal contamination in soil and wheat (Triticum Aestivum L.). plant around The Corlu-Cerkezko highway in Thrace Region. Global NEST Journal, 14(4), 496-504.

15. Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., Kandhro, G. A., Shah, A. Q., & Baig, J. A. (2009). Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.). grown in soil amended with domestic sewage sludge. Journal of Hazardous Materials, 164(2-3), 1386-1391.

16. Srivastav, A. L., Kaur, T., Rani, L., & Kumar, A. (2019). Scientific research production of India and China in environmental chemistry: a bibliometric assessment. International Journal of Environmental Science and Technology, 16, 4989-4996.

17. Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 456-64.

18. Leong, Y. K., & Chang, J.-S. (2020). Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresource Technology, 30, 122886.

19. Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., & Wang, X. (2016). Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environmental Science & Technology, 50, 7290-7304.

20. Zhang, C., Li, X., Chen, Z., Wen, T., Huang, S., Hayat, T., Alsaedi, A., & Wang, X. (2018). Synthesis of ordered mesoporous carbonaceous materials and its highly efficient capture of uranium from solutions. Science China Chemistry, 61, 281-293.

21. Wu, Q., Leung, J. Y. S., Du, Y., Kong, D., Shi, Y., Wang, Y., & Xiao, T. (2019). Trace metals in e-waste lead to serious health risk through consumption of rice growing near an abandoned e-waste recycling site: comparisons with PBDEs and AHFRs. Environmental Pollution, 247, 46-54.

22. Wu, Y., Pang, L. Y., Wang, X., Yu, S., Fu, D., Chen, J., & Wang, X. (2019). Environmental remediation of heavy metal ions by novelnanomaterials: a review. Environmental Pollution, 246, 608-620.

23. Angurets, O., Khazan, P., Kolesnikova K., Kushch, M., Černochova, M., & Havránek, M. (2023). Ukraine, damage to the environment, environmental consequences of war. NGO “Green World – Friends of the Earth”.

24. Spain, J. C. (1995). Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 49, 523-555.

25. Bulloch, G., Green, K., Sainsbury, M. G., Brockwell, J. S., Steeds, J. E., & Slade, N. J. (2001). Land Contamination: Technical Guidance on Special Sites: Explosives Manufacturing & Processing Sites. R&D Technical Report P5-042/TR/03. Environment Agency.

26. Guilbaud, M. (2020). The Environmental Impact of an Explosion. White Paper. Geode.

27. Zwijnenburg, W., & te Pas, K. (2015). Amidst the debris... A desktop study on the environmental and public health impact of Syria’s conflict. Colophon.

28. Environmental Impact of Munition and Propellant Disposal. Final Report of Task Group AVT-115. (2010). Research and Technology Organisation / North Atlantic Treaty Organisation.

29. Hathaway, J. E., Rishel, J. P., Walsh, M. E., Walsh, M. R., & Taylor, S. (2015). Explosive particle soil surface dispersion model for detonated military munitions. Environmental Monitoring and Assessment, 187(415), 4652.

30. Broomandi, P., Guney, M., Kim, J. R., & Karaca, F. (2020). Soil Contamination in Areas Impacted by Military Activities: A Critical Review. Sustainability, 12, 9002.

31. Lima, D., Bezerra, M., Neves, E., & Moreira, F. (2011). Impact of ammunition and military explosives on human health and the environment. Reviews on Environmental Health, 26(2), 101-110.

32. Gorecki, S., Nesslany, F., Hube, D., Mullot, J., Vasseur, P., Marchioni, E., Camel, V., Noël, L., Le, B. B., Guérin, T., Feidt, C., Archer, X., Mahe, A., & Rivière, G. (2017). Human health risks related to the consumption of foodstuffs of plant and animal origin produced on a site polluted by chemical munitions of the First World War. Science of the Total Environment, 599-600, 314-323.

33. Pichtel, J. (2012). Distribution and Fate of Military Explosives and Propellants in Soil: A Review. Applied and Environmental Soil Science, 2012, 617236.

34. Olson, K., & Tharp, M. (2020). How did the Passaic River, a Superfund site near Newark, New Jersey, become an Agent Orange dioxin TCDD hotspot? Journal of Soil and Water Conservation, 75(2), 33A-37A.

35. Ryu, H., Han, J., Jung, J. W., Bae, B., & Nam, K. (2007). Human health risk assessment of explosives and heavy metals at a military gunnery range. Environmental Geochemistry and Health, 29(4), 259-269.

36. Vasarevicius, S., & Greičiūte, K. (2004). Investigation of soil pollution with heavy metals in Lithuanian military grounds. Journal of Environmental Engineering and Landscape Management, 12(4), 132-137.

37. Idzelis, R. L., Greičiūte, K., & Paliulis, D. (2006). Investigation and evaluation of surface water pollution with heavy metals and oil products in Kairiai Military Ground territory. Journal of Environmental Engineering and Landscape Management, 14(4), 183-190.

38. Lewis, T. A., Newcombe, D. A., & Crawford, R. L. (2004). Bioremediation of soils contaminated with explosives. Journal of Environmental Management, 70(4), 291-307.

39. Hawari, J., Beaudet, S., Halasz, A., Thiboutot, S., & Ampleman, G. (2000). Microbial degradation of explosives: biotransformation versus mineralization. Applied Microbiology and  Biotechnology, 54(5), 605-618.

40. Rieger, P., & Knackmuss, H. J. (1995). Basic Knowledge and Perspectives on Biodegradation of 2,4,6-Trinitrotoluene and Related Nitroaromatic Compounds in Contaminated Soil. Biodegradation of nitroaromatic compounds; Spain, J. C., Ed. New York: Plenum Publishing Co., 1-18.

41. Dinake, P., Kelebemang, R., & Sehube, N. (2019). A comprehensive approach to speciation of lead and its contamination of firing range soils: a review. Soil & Sediment Contamination, 28, 1-29.

42. Etim, E. U. (2018). Batch leaching of Pb contaminated shooting range soil using citric acid modified washing solution and electrochemical reduction. International Journal of Environmental Science and Technology, 16, 3013-3020.

43. Moon, D. H., Park, J. W., Chang, Y. Y., Ok, Y. S., Lee, S. S., Ahmad, M., Koutsospyros, A., Park, J.H., & Baek, K. (2013). Immobilization of lead in contaminated firing range soil using biochar. Environmental Science and Pollution Research, 20, 8464-8471.

44. Cao, X., Ma, L. Q., Chen, M., Hardison, D, W., & Harris, W. G. (2003). Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Science of the Total Environment, 307, 179-189.

45. Lin, Z., Comet, B., Qvarfort, U., & Herbert, R. (1995). The chemical and mineralogical behaviour of Pb in shooting range soils from central Sweden. Environmental Pollution, 89, 303-309.

46. Pro zatverdzhennja Gigijenichnyh reglamentiv dopustymogo vmistu himichnyh rechovyn u g'runti [On approval of Hygienic regulations for the permissible content of chemicals in the soil], 1595 Order of the Ministry of Health of Ukraine (2020). https://zakon.rada.gov.ua/laws/show/z0722-20#Text. [in Ukrainian]

47. Lago-Vila, M., Rodríguez-Seijo, A., Vega, F. A., & Arenas-Lago, D. (2019). Phytotoxicity assays with hydroxyapatite nanoparticles lead the way to recover firing range soils. Science of the Total Environment, 690, 1151-1161.

48. Martin, W. A., Nestler, C. C., Wynter, M., & Larson, S. L. (2014). Bullet on bullet fragmentation profile in soils. Journal of Environmental Management, 146, 369-372.

49. Didovets, Yu., Koloskov, V., Koloskova, H., & Jinadu, A. (2021). Model' systemy upravlinnja bezpekoju rekul'tyvacii' zemel' misc' zneshkodzhennja ta znyshhennja bojeprypasiv [Model of safety management system of land recultivation of places of ammunition disposal and destruction]. Technogenic and ecological safety, 10(2/2021), 64-69. [in Ukrainian]

50. Ndibe, T., Benjamin, B., Eugene, W., & Usman, J. (2018). A Review on Biodegradation and Biotransformation of Explosive Chemicals. European Journal of Engineering and Technology Research, 3(11), 58-65.

51. Kanwar, V. S., Sharma, A., Srivastav, A. L., & Rani, L. (2020). Phytoremediation of toxic metals present in soil and water environment: a critical review. Environmental Science and Pollution Research, 27, 44835-44860.

52. Gao, J.-j., Peng, R.-h., Zhu, B., Tian, Y.-s., Xu, J., Wang, B., Fu, X.-y., Han, H.-j., Wang, L.-j., Zhang, F.-j., Zhang, W.-h., Deng, Y.-d., Wan, Y., Li, Z.-J., & Yao, Q.-H. (2021). Enhanced phytoremediation of TNT and cobalt co-contaminated soil by AfSSB transformed plant. Ecotoxicology and Environmental Safety, 220, 112407.

53. Doyle, R. C., Isbister, J. D., Anspach, G. L., & Kitchensp, J. F. (1986). Composting Explosives/Organics Contaminated Soils. Atlantic Research Corporation.

54. Project Management Institute, Inc. (2013). A Guide to the Project Management Body of Knowledge (PMBOK® Guide). Fifth Edition. Newtown Square, Pennsylvania, Project Management Institute, Inc.

55. Nykyforov, L. L. (2013). Bezpeka zhyttjedijal'nosti: Navchal'nyj posibnyk [Safety of habitability: Tutorial]. Dashkov i K. [in Ukrainian]

56. Andronov, V, Didovets, Yu., Koloskov, V., Koloskova, H., & Jinadu, A. (2021). Vdoskonalenyj kryterij v metodi ocinjuvannja rivnja bezpeky procesu rekul'tyvacii' zemel' misc' zneshkodzhennja ta znyshhennja bojeprypasiv [Improved criterion in method of assessment of the safety level of the process of land recultivation of places of ammunition disposal and destruction]. Technogenic and ecological safety, 12(2/2022), 43-50. [in Ukrainian]

57. Bilodid, I. K. (eds). (1973). Slovnyk ukrai'ns'koi' movy [Vocabulary of Ukrainian language], 4. Kyiiv, Naukova dumka.

58. Zakharchenko, Ju., Ivanets, H., Ivanets, M., Kalugin, V., & Tiutiunyk, V. (2021). Formuvannja tras pol''otu bezpilotnyh lital''nyh aparativ pid chas operatyvnogo monitoryngu okremoi' miscevosti, de stalasja nadzvychajna ekologichna sytuacija [Formation of flight trajectories of unmanned aerial vehicles during operational monitoring of certain territory of an environmental emergency]. Technogenic and ecological safety, 11(1/2022), 23-33. [in Ukrainian]

59. Maksymov, V. (2023). ZSU otrymaly Bozena-5: jak dopomagajut' slovac'ki mashyny rozminuvannja [ZSU received Bozena-5: how Slovak demining machines help]. Today.UA. URL: https://biz.today.ua/russkyj-vsu-poluchyly-bozena-5-kak-pomogayut-slovatskye-mashyny-razmynyrovanyya/. [in Ukrainian]

60. Myhajlova, G. (2023). A mechanical deminer with a robot arm: Ukraine will be demined by modern mechanisms [Mehanichnyj saper iz roborukoju: rozminovuvaty Ukrai'nu budut' suchasni mehanizmy]. Telegraf. URL: https://telegraf.com.ua/ukr/tehnologii/2023-03-20/5783639-mekhanichniy-saper-iz-roborukoyu-rozminovuvati-ukrainu-budut-suchasni-mekhanizmi-video-foto. [in Ukrainian]

61. Shmatkov, G. G., & Jakovyshyna, T. F. (2013). Fitoekstrakcija vazhkyh metaliv z g'runtu [Phytoextraction of heavy metals from soil]. National Mining University. Collection of scientific works, 41, 182-187. [in Ukrainian]

62. Kumar, S. (2014). Phytoremediation of Explosives using Transgenic Plants. Journal of Petroleum & Environmental Biotechnology, 4, 11127.