FORMATION OF FLIGHT TRAJECTORIES OF UNMANNED AERIAL VEHICLES DURING OPERATIONAL MONITORING OF CERTAIN TERRITORY OF AN ENVIRONMENTAL EMERGENCY

PDF(UKRAINIAN)

 

Zakharchenko Julia

Research Institution Scientific Ukrainian Research Institute of Environmental Problems, Kharkiv, Ukraine

https://orcid.org/0000-0003-1978-2818

 

Ivanets Hryhorii

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0002-4906-5265

 

Ivanets Mykhailo

Ivan Kozhedub Kharkiv National Air Force University, Kharkiv, Ukraine

https://orcid.org/0000-0002-3106-7633

 

Kalugin Volodymyr

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0002-6899-1010

 

Tiutiunyk Vadym

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0001-5394-6367

 

DOI: 10.52363/2522-1892.2022.1.4

 

Keywords: environmental emergency, monitoring of a certain area, chemical contamination zone, unmanned aerial vehicle, flight path

 

Abstract

In the article with the aim of the functioning efficiency of the unified state system of civil protection to minimize the consequences and prevent the depletion or destruction of individual natural complexes and resources (i.e., excessive pollution of the environment and the destructive effects of natural forces and other factors that limit or exclude the possibility of life of a person and the implementation of economic activity under these conditions) the results of further development of the scientific and technical foundations for the implementation of a system for operational monitoring of a certain area have been presented. These results were based on the example of the issues of reconnaissance and clarification of the area parameters contaminated by hazardous chemicals using unmanned aerial vehicles (UAVs) where an environmental emergency has been occurred. It has been established that the main criterion for the effectiveness of the use of UAVs is the time of monitoring the area of an environmental emergency. That time is associated with both the characteristics and the formation of the UAV flight path.

In the article the method of forming a flight path for reconnaissance and clarifying the parameters of the contamination zone  of the area with hazardous chemicals by one UAV was presented. Also, the formation of the flight path when using the group flight of the UAV was presented. As a result of the research, it was found that with the group version of monitoring the UAV terrain, the flight time is significantly reduced. This proves the effectiveness of organizing such an option for monitoring a certain area of an emergency environmental situation.

 

References

1. Guskova, N. D., & Neretina, E. A. (2013). Threats of natural character, factors affecting sustainable development of territories and their prevention. Journal of the Geographical Institute Jovan Cvijic, SASA, 63(3), 227–237.

2. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., & Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6(10(90), 11–16.

3. Rybalova, O., Artemiev, S., Sarapina, M., Tsymbal, B., Bakharevа, A., Shestopalov, O., & Filenko, O. (2018). Development of methods for estimating the environmental risk of degradation of the surface water state. Eastern-European Journal of Enterprise Technologies, 2(10(92)), 4–17.

4. Bakharevа, A., Shestopalov, O., Filenko, O., Tykhomyrova, T., Rybalova, O., Artemiev, S., & Bryhada, O. (2018). Studying the influence of design and operation mode parameters on efficiency of the systems of biochemical purification of emissions. Eastern-European Journal of Enterprise Technologies, 3(10(93)), 59–71.

5. Tuituinik, V., Tuituinik, O., Udianskyi, M., & Yashchenko, O. (2021). Klasteryzacija regioniv Ukrainy za rivnem nebezpeky ta shljahy pidvyshhennja efektyvnosti funkcionuvannja jedynoi derzhavnoi systemy cyvil’nogo zahystu v umovah nevyznachenosti vhidnoi’ informacii’ pro vynyknennja nadzvychajnyh sytuacij [Regions of Ukraine clustering level of risk and ways to improve the efficiency of a unified state civil defense system under uncertainty input information about emergencies]. Scientific bulletin: Сivil protection and fire safety, 1(11), 75–84. [in Ukrainian].

6. Pro zonu nadzvychajnoiekologichnoisytuacii[About the zone of ecological emergency], 1908-II Law of Ukraine (2000). https://zakon.rada.gov.ua/ laws/show/1908-14#Text. [in Ukrainian].

7. Kodeks cyvil’nogo zahystu Ukrai’ny [Code of Civil Protection of Ukraine], 5403-VI Code of Ukraine (2012). https://zakon.rada.gov.ua/laws/show/5403-17#Text. [in Ukrainian].

8. Pro zatverdzhennja Polozhennja pro Jedynu derzhavnu systemu cyvil’nogo zahystu [On approval of the Regulations on the Unified State System of Civil Protection], 11 Resolution of the Cabinet of Ministers of Ukraine (2014). https://zakon.rada.gov.ua/laws/show/11-2014-%D0%BF#Text. [in Ukrainian].

9. Pro shvalennja Strategii' reformuvannja systemy Derzhavnoi' sluzhby Ukrai'ny z nadzvychajnyh sytuacij [On approval of the Strategy for reforming the system of the Civil Service of Ukraine for Emergencies], 61-r Resolution of the Cabinet of Ministers of Ukraine (2017). https://zakon.rada.gov.ua/laws/show/61-2017-%D1%80#Text. [in Ukrainian].

10. Salnik, Y. P., & Matala, I. V. (2010). Analiz tehnichnyh harakterystyk i mozhlyvostej bezpilotnyh aviacijnyh kompleksiv operatyvno-taktychnogo ta taktychnogo radiusa dii’ armij rozvynenyh krai’n [Analysis of technical descriptions and possibilities of UAV operational and tactical range of armies of developed countries]. Military Technical Collection, 3, 70–74. [in Ukrainian].

11. Korchenko, A. G., Illyash, O. S. (2012). Obobshhennaja klassifikacija bespilotnyh letatel’nyh apparatov [Generalized classifications of unmanned air vehicles]. Scientific Works of Kharkiv National Air Force University, 4(33), 27–36. [in Russian].

12. Kharchenko, O. V., Bogoslavets, S. O., & Kotsurenko, Yu. V. (2013). Kompleksnyj analiz perspektyv rozvytku vijs’kovoi’ bezpilotnoi’ aviacii’ u zbrojnyh sylah providnyh krai’n svitu [The complex analysis of prospects for development of pilotless military aviation in the armed forces of the leading countries of the world]. Science and Defence, 1, 51–57. [in Ukrainian].

13. Korobka, V., Zhuravskyi, O., & Tkachenko, V. (2013). Pidvyshhennja efektyvnosti vedennja radiacijnoi’, himichnoi’ ta biologichnoi’ rozvidky shljahom zastosuvannja bezpilotnyh lital’nyh aparativ [Ways of increasing efficiency of NBC surveillance by using unmanned aerial vehicles (UAV)]. Science and Defence, 2, 29–34. [in Ukrainian].

14. MitinM. D., & Nikolskij, D. B. (2013). Sovremennye tendencii razvitija otrasli bespilotnyh letatelnyh apparatov [Modern trends in the development of the unmanned aerial vehicles industry]. GEOMATICS, 4, 27–31. [in Russian].

15. Rusnak, I. S., Khyzhnyak, V. V., & Yemets, V. I. (2014). Bezpilotna aviacija u sferi cyvil’nogo zahystu Ukrai’ny. Stan i perspektyvy rozrobky ta zastosuvannja [Unmanned aircraft in civil protection of Ukraine. Current situation and prospects of development and application]. Science and Defence, 2, 34–39. [in Ukrainian].

16. Andronov, V. A., Diviziniuk, M. M., Kalugin, V. D., & Tiutiunik, V. V. (2016). Naukovo-konstruktors’ki osnovy stvorennja kompleksnoi’ systemy monitoryngu nadzvychajnyh sytuacij v Ukrai’ni: monografija [Scientific and design bases of complex creation system of emergency monitoring situations in Ukraine: monograph]. Kharkiv: National University of Civil Defence of Ukraine, 319. [in Ukrainian].

17. OpenkoP. V., TkachovV. V., KobzievV. V., & VasylievV. A. (2017). Zastosuvannja bezpilotnyh lital’nyh aparativ dlja kontrolju parametriv radiolokacijnyh zasobiv zenitnyh raketnyh kompleksiv [Application of unmanned aerial vehicles for monitoring the radar equipment parameters of surface-to-air missile systems]. Science and Defence, 3/4, 61–65. [in Ukrainian].

18. Mosov, S. (2020). Stvorennja systemy bezpilotnoi’ aviacii’ u skladi DSNS – aktual’ne pytannja s’ogodennja [The creation of an unmanned aerial vehicle system within the SES is a topical issue today]. Pozhezhna ta tehnogenna bezpeka, 10, 12–15. [in Ukrainian].

19. Mosov, S. (2020). Era bezpilotnoi’ aviacii’ u sferi cyvil’nogo zahystu [The era of unmanned aerial vehicles in the field of civil defense]. Pozhezhna ta tehnogenna bezpeka, 11, 14–16. [in Ukrainian].

20. Mosov, S. (2021). BpLA – perspektyvnyj zasib radiacijnoi’, himichnoi’ ta biologichnoi’ rozvidky [UAVs are a promising means of radiation, chemical and biological reconnaissance]. Pozhezhna ta tehnogenna bezpeka, 11, 16–19. [in Ukrainian].

21. Tiutiunik, V. V., Kalugin, V. D., IvanetsG. V., IvanetsM. G., & ZakharchenkoYu. V. (2016). Ocinka efektyvnosti pokryttja terytorii’ nadzvychajnoi’ sytuacii’ za dopomogoju avtomatyzovanyh prystroi’v kontrolju nebezpechnyh faktoriv nebezpechnyh faktoriv pry i’h rozkydanni iz zavysajuchogo nad tochkoju skydannja bezpilotnogo lital’nogo aparatu [Efficiency estimate of the emergency situations territory covering by means of the automated control units of dangerous factors in case of their scattering from the dumping of the unmanned aerial vehicle hanging over the point]. Technogenic and Environmental Safety and Civil Protection, 10, 34–43. [in Ukrainian].

22. Ivanets, G. V., Tiutiunyk, V. V., Kalugin, V. D., Pospelov, B. B., & Zakharchenko, Yu. V. (2017). Algorytm ocinky efektyvnosti pokryttja terytorii’ nadzvychajnoi’ sytuacii’ avtomatyzovanymy prystrojamy kontrolju nebezpechnyh faktoriv pry i’h rozkydanni z bezpilotnogo lital’nogo aparatu v umovah nestabil’nostej povitrjanogo seredovyshha [Algorithm for assessing the effectiveness of coatings emergency situation territory by the automated control units of dangerous factors at their scattering from the unmanned aerial vehicle in the conditions of the astable air]. Problems of Emergencies, 25, 45–56. [in Ukrainian].

23. Austin, R. (2010). Unmanned aircraft systems: UAVS design, development and deployment. John Wiley & Sons, Ltd. DOI:10.1002/9780470664797.

24. Kreps, S., & Zenko, M. (2014). The next drone wars: preparing for proliferation. Foreign Affairs, 93(2), 68–79.

25. UVS International. (2016). RPAS: The Global Perspective. 4th Annual Edition of the International Remotely Piloted Aircraft Systems Yearbook.

26. Drobakha, G. А., & Lisitsin, V. Е. (2016). Formuvannja trasy pol’otu bezpilotnogo lital’nogo aparatu pid chas vykonannja zavdan’ z fotografuvannja miscevosti [Planning of unmanned aerial vehicle trace for aerophotography tasks]. Zbirnyk naukovyh prac’ Nacional’noi’ akademii’ Nacional’noi’ gvardii’ Ukrai’ny, 2(28), 26–34. [in Ukrainian].

27. Tiutiunyk, V. V., Sobol, O. M., Kalugin, V. D., & Zakharchenko, J. V. (2020). Formuvannja dynamichnoi' modeli operatyvnogo monitoryngu rivnja zabrudnennja ekosystemy vnaslidok avarij na ob’jektah jadernoi' energetyky [Formation of the dynamic model for operative monitoring of the ecosystem’s pollution level through emergencies at nuclear power plants]. Environmental safety and natural resources, 1(33), 95–114. [in Ukrainian].

28. Tiutiunyk, V. V., Strelec, V. M., Kalugin, V. D., & Zakharchenko, Yu. V. (2018). Rozvytok metodologichnogo pidhodu dlja tehnogenno-ekologichnoi ocinky rivnja nebezpeky funkcionuvannja lokalnyh terytorij Ukrainy [Methodological approach development for technogenic and ecological assessment of danger level of functioning of local territories of Ukraine]. Technogenic and ecological safety, 3(1/2018), 91–101. [in Ukrainian].

29. Tiutiunyk, V. V., Kalugin, V. D., & Pisklakova, O. O. (2018). Osnovopolozhni pryncypy stvorennja u jedynij derzhavnij systemi cyvilnogo zahystu informacijno-analitychnoi pidsystemy upravlinnja procesamy poperedzhennja j lokalizacii naslidkiv nadzvychajnyh sytuacij [The making fundamental principles of the informational and analytical subsystem of prevention management processes and localization of emergency situation consequences]. Control, Navigation and Communication Systems, 4(50), 168–177. [in Ukrainian].

30. Pro zatverdzhennja Metodyky prognozuvannja naslidkiv vylyvu (vykydu) nebezpechnyh himichnyh rechovyn pid chas avarij na himichno nebezpechnyh ob’jektah i transporti [About the statement of the Methodology of forecasting of consequences of spill (emission) of dangerous chemicals during accidents on chemically dangerous objects and transport], 1000 Order of the Ministry of Internal Affairs of Ukraine (2019). https://zakon.rada.gov.ua/laws/show/z0440-20#Text. [in Ukrainian].