ELECTROPULSE EROSION OF ELECTRODES IN A LIQUID MEDIUM DURING THE TREATMENT OF GALVANIC WASTEWATER

PDF(ENGLISH)

 

Kruchyna Victoria

National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

 

Bereshko Ihor

National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

https://orcid.org/0000-0002-0675-9582

 

Kuznetsova Natalia

National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

 

Kleevskaya Valeria

National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

 

DOI: 10.52363/2522-1892.2022.1.6

 

Keywords: waste water treatment, pulse discharges, dispersion, electrode erosion

 

Abstract

The high-quality treatment of waste water from galvanic production sites is a recent problem in many fields of production. The electric pulse method is the most acceptable treatment method for this type of waste water.

In the present paper are presents the survey results of the dependence of productivity of the main technological process (metal dispersion) on the energy and technological characteristics of a pulse generator and an electric discharge reactor. The survey results are necessary to determine the optimal operating modes and adequate design of equipment for waste water treatment of aircraft production galvanic areas.

Physical and mathematical model which are presented and experimental data confirm the dependence of the magnitude and nature of the electric pulse erosion of the material on the dispersion conditions.

Results of an experimental investigation of energy technology factors influence on the dispersion of metal in an electroerosive reactor are presented in the paper. A mathematical model of the dependence of the process productivity and specific energy expenditure has been obtained. The results of an experimental investigation of the discharge dimple on a microscope REM 106 for steel electrodes are presented.

 

References

1. Mukheef, R. A. A.-H., Obayes, A. A., & Omran, Z. A. (2022). Study The Suitability of Water Quality For Agricultural Uses In Al-Diwaniyah Governorate in Iraq. Asian Journal of Water, Environment and Pollution, 19(1), 87–92. DOI: 10.3233/AJW220013.

2. Shapiro, J. S. (2022). Pollution Trends and US Environmental Policy: Lessons from the Past Half Century. Review of Environmental Economics and Policy, 16(1), 42–61. DOI: 10.1086/718054.

3. Farias de Souza, P., Vieira, K. S., da Silva Lima, L., Azevedo Netto, A., de Freitas Delgado, J., Corrêa, T. R., Baptista Neto, J. A., Gaylarde, C. C., & da Fonseca, E. M. (2021). Comparing the concentrations of heavy metals on two bivalve species in Santos Bay, Brazil: Subsidies to understanding the assimilation dynamic of bivalve contaminants. Water environment research: a research publication of the Water Environment Federation, 93(12), 3037–3048. DOI: 10.1002/wer.1655.

4. Bolshanina, S., Gurets, H., Balabuha, D., & Milyayeva, D. (2014). Ochyshhennja stichnyh vod gal’vanichnyh vyrobnyctv sorbcijnymy metodamy [Sewage treatment by sorption methods in galvanic productions]. Ecological safety, 1/2014(17), 114–118. [in Ukrainian].

5. Patyal, V., Jaspal, D., & Khare, K. (2021). Materials in constructed wetlands for wastewater remediation: A review. Water environment research: a research publication of the Water Environment Federation, 93(12), 2853–2872. DOI: 10.1002/wer.1648.

6. Mentzer, C., Drinkwater, M., & Pagilla, K. R. (2021). Investigation of direct waste-activated sludge dewatering benefits and costs in a water resource recovery facility. Water environment research: a research publication of the Water Environment Federation, 93(12), 2998–3010. DOI: 10.1002/wer.1651.

7. Nester, A. A., Korchyk, N. M., & Baran, B. A. (2008). Stichni vody pidpryjemstv ta i’h ochyshhennja [Wastewater from enterprises and their treatment]. Khmelnytsky: KhNU, 171. [in Ukrainian].

8. Pljacuk, L. D., & Mel’nyk, O. S. (2008). Analiz tehnologij ochystky gal’vanichnyh stokiv v Ukrai’ni [Analysis of galvanic wastewater treatment technologies in Ukraine]. Visnyk SumDU. Serija Tehnichni nauky, 2, 116–120. [in Ukrainian].

9. Kulikova, D., & Kovrov, O. (2020). Udoskonalennja tehnologichnoi’ shemy ochystky stichnyh vod gal’vanichnyh cehiv pidpryjemstv vugil’nogo mashynobuduvannja [Improving the technological procedure for the plating wastewater treatment of coal mechanical engineering enterprises]. Ecological Safety and Balanced Use of Resources, 2(22), 96–107. [in Ukrainian].

10. Sposib ochyshhennja stichnyh vod elektroimpulsnym metodom [Method of wastewater treatment by electropulse method] (UA Patent 55046 A). (17.03.2003). UA Patent. [in Ukrainian].