WAYS TO IMPROVE THE METHOD OF CALCULATING THE VOLUME OF RUNOFF FROM THE SOIL SURFACE

PDF(UKRAINIAN)

 

Adamenko Mykola

https://orcid.org/0000-0001-6245-4786

 

Vasilchenko Alexey

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0002-5806-4029

 

Darmofal Eleonora

Kharkiv State Academy of Physical Culture, Kharkiv, Ukraine

https://orcid.org/0000-0001-9868-0486

 

Danilin Olexander

National University of Civil Defence of Ukraine, Kharkiv, Ukraine

https://orcid.org/0000-0002-4474-7179

 

DOI: 10.52363/2522-1892.2022.1.9

 

Keywords: ecological safety, ecological risk, flooding, dangerous consequences, natural resources, economic costs, soil blotting capacity, sewage

 

Abstract

The article considers the problem, which is becoming increasingly important in the environmental and economic spheres. It is noted that due to the trend of global warming, the dangers of floods and their harmful environmental and economic consequences are becoming worldwide importance. In this regard, we need to solve the problem in the field of strategies for timely response to floods, mitigating their consequences and preservation of natural floodplain resources. The article analyzes additional factors influencing floods in Western Ukraine through climatic changes, unauthorized scarring forests, anthropogenic changes. To solve the problem of flood forecasting and reducing their consequences, a systematic approach is proposed, which takes into account the environmental risks of floods. A scenario approach is used, which reproduces the tree of possible developments during and after the flood. Arrays of initial input emergencies, probable emergencies and probable consequences are formed. Based on the considered scenarios, strategies and risks management options are constructed. Meaning the scenario approach, the article shows that the normative calculation of the volume of the drain from the soil surface to the reservoir does not take into account some important factors such as soil filtration capacity, surface slope and other parameters. For a more accurate determination of the number of drains it is recommended to improve the estimated formula. To do this, it is proposed to use a double integral over time and mass of water on the surface, which takes into account the mass of water arrival and water outflow, which in turn take into account the properties of the study area, evaporation and the ability of the soil to retain moisture, follow the balance sheet. In this case, conclusions are made to develop a set of measures to reduce the risk of floods and malicious effects.

 

References

1.   Bratkovich, S., Burban, L., Katovich, S., Locey, C., Pokorny, J., & Wiest, R. (1993). Flooding and its Effect on Trees. Misc. Publ. Newtown Square, PA: U.S. Dept. of Agriculture, Forest Service, Northern Area State & Private Forestry.

2.   Chartier, Y., Emmanuel, J., Pieper, U., Prüss, A., Rushbrook, P. (eds.) (2014). Safe management of wastes from health-care activities. 2nd edition. Geneva, World Health Organization, 329. https://www.euro.who.int/__data/assets/pdf_file/0012/268779/Safe-management-of-wastes-from-health-care-activities-Eng.pdf.

3.   Mozgovoy, D. K. (2018) Cuputnykovyy monitorynh poveney za danymy radarnoyi zyomky C-diapazonu [Satellite monitoring of floods by C-band radar data]. Ukrayins’kyy zhurnal dystantsiynoho zonduvannya Zemli, 16, 4–12. [in Ukrainian]

4.   Snizhko, S., Shevchenko, O., & Didovets’, Yu. (2021). Analiz vplyvu klimatychnykh zmin na vodni resursy ukrayiny (rezyume doslidzhennya) [Analysis of the impact of climate change on water resources of Ukraine (study summary)]. Tsentr ekolohichnykh initsiatyv «Ekodiya», 68. [in Ukrainian].

5.   Jha, A. K., Bloch, R., & Lamond, J. (2012). Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century. World Bank, Washington, 632. http://hdl.handle.net/10986/2241.

6.   Bates, B. C., Kundzewicz, Z. W., Saohon, U., & Palutikof, J. P. (2008). Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. Geneva, IPCC Secretariat, 228.

7.   ZN.UA (2009). Chipak: Istorija razrushitel'nyh posledstvij navodnenija 1998 goda na Zakarpat'e uzhe ne povtoritsja [Chipak: The story of the devastating consequences of the 1998 flood in Transcarpathia will not be repeated]. 24.04.2009. https://zn.ua/internal/chipak_istoriya_razrushitelnyh_posledstviy_navodneniya_1998_goda_na_zakarpatie_uzhe_ne_povtoritsya.html. [in Russian].

8.   UKRINFORM.UA. (2011). Berezneva povin' 2001 roku na Zakarpatti: pogljad cherez roky [March flood of 2001 in Transcarpathia: a look through the years]. https://www.ukrinform.ua/rubric-polytics/74590-berezneva_povn_2001_na_zakarpatt_poglyad_cherez_rk_62246.html. [in Ukrainian].

9.   Shramovych, V. (2020). Chomu zatopylo Karpaty ta chy pov’jazano ce z vyrubkoju lisiv [Why the Carpathians were flooded and whether it is related to deforestation]. BBC News Ukraine, 25.06.2020. https://www.bbc.com/ukrainian/features-53169074. [in Ukrainian].

10.GORDON.UA. (2020). Navodnenie v Ukraine 2020 goda [Flooding in Ukraine in 2020]. https://gordonua.com/tags/navodnenie-v-ukraine-2020-goda.html. [in Russian].

11.Rybalova, O. V. (2018). Vyznachennya vplyvu pryrodnykh chynnykiv na formuvannya poverkhnevoho stoku [Determination of the influence of natural factors on the formation of surface runoff]. VII International Scientific and Practical Conference «International Trends in Science and Technology», Warsaw, Poland RS Global, 10–17. http://repositsc.nuczu.edu.ua/handle/123456789/8302. [in Ukrainian]

12.Pešková, J., & Štibinger, J. (2015). Computation method of the drainage retention capacity of soil layers with a subsurface pipe drainage system. Soil & Water Research, 10(1), 24–31. DOI: 10.17221/119/2013-SWR.

13.Cepuder, P., Evett, S., Heng, L. K., Hignett, C., Laurent, J. P., & Ruelle, P. (2018). Field estimation of soil water content: a practical guide to methods, instrumentation and sensor technology. IAEA, Vienna, 131.

14.Song, S., & Wang, W. (2019). Impacts of antecedent soil moisture on the rainfall-runoff transformation process based on high-resolution observations in soil tank experiments. Water, 11(2), 296–314. DOI: 10.3390/w11020296.

15.Rybalova, O., Artemiev, S. (2017). Development of a procedure for assessing the environmental risk of the surface water status deterioration. EasternEuropean Journal of Enterprise Technologies, 5(10-89), 67–76. DOI: 10.15587/1729-4061.2017.112211.

16.Tarnavsky, E., Mulligan, M., & Ouessar, M. (2013). Dynamic hydrological modeling in drylands with TRMM based rainfall. Remote Sensing, 5(12), 66916716. DOI:10.3390/rs5126691.

17.National Classifier of Ukraine. (2010). Classifier of emergency situations DK 019:2010. Adopted and entered into force by the Order of Derzhspozhyvstandart of Ukraine 11.10.2010 No. 457. https://zakon.rada.gov.ua/rada/show/va457609-10#Text. [in Ukrainian].

18.DSTU 8691:2016. (2016). Stichni vody. Nastanovy shhodo vstanovlennja tehnologichnyh normatyviv vidvedennja doshhovyh stichnyh vod u vodni ob’jekty [Sewage Sludge. То Install Technological Standards Diversion Of Rainwater Sewage Into Water Bodies]. Kyiv: DP “UkrNDNC”, 28. [in Ukrainian].

19.Adamenko, M. I., Darmofal, E. A., Vasilchenko, O. V., & Danilin, O. M. (2021). Ekologichni ryzyky vynyknennja povenej na Zahidnij Ukrai’ni [Environmental risks of floods in Western Ukraine]. International scientific-practical conference “Problems of Emergency Situations”, 366–367. http://repositsc.nuczu.edu.ua/handle/123456789/13002. [in Ukrainian].