Model of quality of detection of environmental hazards using real data of monitoring
B. Pospelov, V. Andronov
ABSTRACT
Development of quality models of environmental hazard detection for real data monitoring in the form of the problem of testing two statistical hypotheses. Well-known methods and the results of solving the problem of testing two statistical hypotheses using in relation to the problem of detection of environmental hazard according to monitoring by technical means. Propose a generalized mathematical model of quality environmental hazard detection. On the basis of the generalized model have proposed the simplified model of the quality of detection of environmental hazards on the monitoring data. The generalized model is based on the current priori probability of the presence and absence of environmental hazards, on the average risk of environmental hazard detection, on the probability of correct and false detection of danger, as well as the cost of wrong decisions related to the pass, and false detection. Simplified model determines the relationship of average risk of erroneous decisions, with the probabilities of correct and false detection of environmental hazards. The models can be used in practice for assessing and determining of basic indicators of the quality of detection of environmental hazard according to monitoring real objects.
Keywords: mathematical model, the quality of detection of environmental hazards objects monitoring data.
REFERENCES
1. Analitychnyy ohlyad stanu tekhnohennoyi ta pryrodnoyi bezpeky v Ukrayini za 2015 rik. (2016). Ukr. NDITSZ DSNS Ukrayiny, 356.
2. Voloshyn, V. Y., Bushuev, E. Y., Shapar, A. H. еt al. (2006). Ot otsenky sostoyanyya pryrodnoy sredy metodamy dystantsyonnoho zondyrovanyya Zemly k obespechenyyu ustoychyvoho razvytyya obshchestva. Kosmichna nauka i tekhnolohiya, 12, 2/3, 70–78.
3. Posudin, Yu. I. (2013). Metody vymiryuvannya parametriv navkolyshnoho seredovyshcha. Kyyiv: Svit, 285.
4. Shovengerdt, R. A. (2010). Distantsionnoye zondirovaniye. Modeli i metody obrabotki izobrazheniy. Moskva: Tekhnosfera, 560.
5. Mashkov, O., Vasilyev, V., Frolov, V. (2013). Geoinformation and aerospace technologies for information from satellite processing: environmental monitoring. Ekolohichni nauky: nauk.-prakt. zhurnal, 2/2013(4), 107–113.
6. Kishore, K. Das, Bhanita, Das, Bhupen, K. Baruah еt al. (2011). Development of New Probability Model with Application in Drinking Water Quality Data. Advances in Applied Science Research, 2(4), 306–313.
7. Lindenmayera, D. B., Likensa, G. E., Krebsc, C. J. еt al. (2010). Improved probability of detection of ecological «surprises». PNAS, 107, 51, 21957–21962.
8. Pospelov, B. B., Shevchenko, R. I., Basmanov, A. Ye., Fedtsov, A. A. (2012). Vybor pokazateley kachestva i kriterii optimizatsii sovremennykh sistem rannego obnaruzheniya chrezvychaynykh situatsiy. Problemi nadzvichaynikh situatsíy, 15, 122–131.
9. Pospelov, B. B., Shevchenko, R. I. (2012). Rabochiye kharakteristiki pozharnykh izveshchateley sistem pozharnoy avtomatiki. Problemy pozharnoy bezopasnosti, 32, 166–173.
10. Pospelov, B. B., Shevchenko, R. I. (2013). Metod opredeleniya rabochikh kharakteristik dlya gruppovykh pozharnykh izveshchateley sistem pozharnoy avtomatiki. Problemy pozharnoy bezopasnosti, 33, 136–146.
11. Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern European Journal of Enterprise Technologies, 2, 9 (86), 32–37. doi: 10.15587/1729-4061.2017.96694.
12. Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3, 9 (87), 53–59. doi: 10.15587/1729-4061.2017.101985.
13. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4, 9 (88), 53–59. doi: 10.15587/1729-4061.2017.108448.
ЛІТЕРАТУРА
1. Аналітичний огляд стану техногенної та природної безпеки в Україні за 2015 рік. – К.: Укр. НДІЦЗ ДСНС України, 2016. – 356 с.
2. От оценки состояния природной среды методами дистанционного зондирования Земли к обеспечению устойчивого развития общества [Текст] / В. И. Волошин, Е. И. Бушуев, А. Г. Шапарь и др. // Космічна наука і технологія. – К.: НАН України, 2006. – Т. 12. – № 2/3. – С. 70–78.
3. Посудін, Ю. І. Методи вимірювання параметрів навколишнього середовища [Текст] / Ю. І. Посудін. – К.: Світ, 2003. – 285 с.
4. Шовенгердт, Р. А. Дистанционное зондирование. Модели и методы обработки изображений [Текст] / Р. А. Шовенгердт. – М.: Техносфера, 2010. – 560 с.
5. Mashkov, O. Geoinformation and aerospace technologies for information from satellite processing: environmental monitoring [Text] / O. Mashkov, V. Vasilyev, V. Frolov // Екологічні науки: наук.-практ. журн. – К.: ДЕА, 2013. – № 2/2013(4). – С. 107–113.
6. Kishore, K. Das. Development of New Probability Model with Application in Drinking Water Quality Data [Text] / K. Das Kishore, Das Bhanita, K. Baruah Bhupen еt al. // Advances in Applied Science Research. – 2011. – 2(4). – Р. 306–313.
7. Lindenmayera, D. B. Improved probability of detection of ecological «surprises» [Text] / D. B. Lindenmayera, G. E. Likensa, C. J. Krebsc еt al. // PNAS. – December 21, 2010. – Vol. 107. – № 51. – Р. 21957–21962.
8. Поспелов, Б. Б. Выбор показателей качества и критерии оптимизации современных систем раннего обнаружения чрезвычайных ситуаций [Текст] / Б. Б. Поспелов, Р. И. Шевченко, А. Е. Басманов, А. А. Федцов // Проблеми надзвичайних ситуацій. – Х.: НУЦЗ України, 2012. – Вип. 15. – С. 122–131.
9. Поспелов, Б. Б. Рабочие характеристики пожарных извещателей систем пожарной автоматики [Текст] / Б. Б. Поспелов, Р. И. Шевченко // Проблемы пожарной безопасности. – Х.: НУГЗ Украины, 2012. – Вып. 32. – С. 166–173.
10. Поспелов, Б. Б. Метод определения рабочих характеристик для групповых пожарных извещателей систем пожарной автоматики [Текст] / Б. Б. Поспелов, Р. И. Шевченко // Проблемы пожарной безопасности. – Х.: НУГЗ Украины, 2013. – Вып. 33. – С. 136–146.
11. Andronov, V. Development of a method to improve the performance speed of maximal fire detectors [Text] / V. Andronov, B. Pospelov, E. Rybka // Eastern European Journal of Enterprise Technologies. – 2017. – Vol. 2. – Issue 9 (86). – P. 32–37. – doi: 10.15587/1729-4061.2017.96694.
12. Andronov, V. Examining the learning fire detectors under real conditions of application [Text] / V. Andronov, B. Pospelov, E. Rybka, S. Skliarov // Eastern-European Journal of Enterprise Technologies. – 2017. – Vol. 3. – Issue 9(87). – P. 53–59. – doi: 10.15587/1729-4061.2017.101985.
13. Pospelov, B. Design of fire detectors capable of self-adjusting by ignition [Text] / B. Pospelov, V. Andronov, E. Rybka, S. Skliarov // Eastern-European Journal of Enterprise Technologies. – 2017. – Vol. 4. – Issue 9(88). – P. 53–59. – doi: 10.15587/1729-4061.2017.108448.