Analysis of the scenario of a heavy accident in the storage pools for spent nuclear fuel isf-1
S. Azarov, V. Sydorenko, A. Zadunay
DOI: 10.5281/zenodo.1296272
Received: 24 May 2018
Accepted: 15 June 2018
Published online: 18 June 2018
ABSTRACT
Approaches to simulation of the storage pools (SP) for ISF-1 and the results of thermal-hydraulic calculation of scenarios of severe accidents in SP. In the course of the work, the scenario of a severe accident after an earthquake with a prolonged de-energization and the formation of a leak through the metal cladding of the bottom of the SP was considered. Based on the results of computational analyzes, the dynamics of the main processes accompanying the development of a severe accident in the SP of this type have been determined. Key results of calculations: growth rate of mean volume water temperature in the basin at the initial stage of the accident development is 0.6°С/h; when the water level in the upper part of the fuel assembly drops to 51800 s (~14.4 h), the complete dehumidification of SP takes place approximately 64800 s (~18 h) the fuel element temperature reaches 1473 K at 66500 s (~18.5 h), and the fuel temperature is 2813 K after 77400 s (21.5 h) after the start of the accident. When the fuel cladding temperature rises above 1100 K, they begin to be oxidized by water vapor with an intense formation of hydrogen and the release of heat, and when hydrogen is burned, an energy equal to an average of about 260 kJ/mol of reagent, with an explosion of ~ 105 moles of hydrogen formed, more than 3 · 107 kJ energy will be released, and this energy will be scattered as a pulse with a duration of a fraction of a second. Further development of a severe accident can cause destruction of the SP, with the penetration of the bottom. The ingress of hydrogen into the air atmosphere will lead to the formation of an explosive mixture, create conditions for the ignition, explosion, destruction of ISF-1 and the release of radioactivity beyond its limits.
The obtained results of the quantitative analysis can be used to improve the existing design models of SP and to obtain more reliable calculation data for the development of emergency processes in SP of power units of NPPs.
Keywords: storage pools, calculation model, severe accident, fire, explosion.
REFERENCES
1. Kuznetsov, V. M. (2001). Osnovnyye problemy i sovremennoye sostoyaniye bezopasnosti predpriyatiy yadernogo toplivnogo tsikla Rossii. Otsenka vliyaniya radiatsionnogo zagryazneniya na zdorov'ye cheloveka: sb. mater. konf., g. Novosibirsk, 19–45.
2. Sandia Report. Fukushima Daiichi Accident Study (Status as of April 2012), Albuquerque, 2012, 298 p., NEA/CSNI/R(2015). https://fukushima.inl.gov/ PDF/FukushimaDaiichiAccidentStudy.pdf.
3. Kotsuba, O. L., Vorobyov, Yu. Yu., Zhabin, O. I., Humenyuk, D. V. (2016). Analiz vazhkykh avariy v baseyni vytrymky vidpratsʹovanoho yadernoho palyva AES «Fukusima Dayichi» z vykorystannyam rozrakhunkovoho kodu MELCOR 1.8.6. Yaderna ta radiatsiyna bezpeka, 4(72), 13–20.
4. Gauntt, R. O., Cash, J. E., Cole, R. K. аt al. (2005). MELCOR Computer Code Manuals, vol. 1: Primer and User’s Guides. Version 1.8.6. Albuquerque, 785. NUREG/CR-6119.
5. Azarov, S., Sydorenko, V., Zadunay, O. (2018). About estimation of security of atomic stations of Ukraine. Naukovo-tekhnichnyy Zhurnal «Tekhnohenno-ekolohichna bezpeka», 3(1/2018), 58–63. http://doi.org/10.5281/zenodo.1182845.
6. Chernobyl'skaya AES, ІІІ ochered'. Khranilishche otrabotavshego yadernogo topliva (KHOYAT), Í ochered'. Rabochiy proyekt. Sborno-monolitnyy variant. Obshchaya poyanitel'naya zapiska. Razdel «a». (1983). 672.
7. Bolshov, L., Strizhov, V. (2006). SOCRAT – The System of Codes for Realistic Analysis of Severe Accidents. Proc. of Int. Congress on Advances in Nuclear Power Plants (ICAPP’06), Reno, NV, USA, June 4–8. Paper 6439.
8. Azarov, S. I., Taranovsky, A. V., Sydorenko, V. L. (2014). Modeling of physical-chemical processes inside the Sarcophagus. Nuclear Power and the Environment, 1(3), 53–63.
9. Azarov, S. I., Sydorenko, V. L., Yevlanov, V. M., Havrylyuk, M. M. (2016). Analiz umov i mekhanizmiv formuvannya vybukhonebezpechnykh sumishey na ranniy stadiyi rozvytku Chornobylʹsʹkoyi avariyi. Yaderna ta radiatsiyna bezpeka, 4, 39–44.
10. Baker, L., Just, L. (1976). Studies of metal-water reactions at hight temperatures. III Experimental and theoretical of the zirconitim-water reaction. ANI-6548-196, 20–56.
11. Brown, A. F., Healen, T. (1980). The kinetics of total oxygen uptake in steam oxidized zircaloy-2 in range 1272-1673K. J. Nucl. Mater, 88(1), 1–6.
ЛІТЕРАТУРА
1. Кузнецов В. М. Основные проблемы и современное состояние безопасности предприятий ядерного топливного цикла России // Оценка влияния радиационного загрязнения на здоровье человека: сб. матер. конф., г. Новосибирск. 2001 г. С. 19–45.
2. Sandia Report. Fukushima Daiichi Accident Study (Status as of April 2012), Albuquerque, 2012, 298 p., NEA/CSNI/R(2015). Available: https://fukushima.inl.gov/ PDF/FukushimaDaiichiAccidentStudy.pdf.
3. Коцуба О. Л., Воробйов Ю. Ю., Жабін О. І., Гуменюк Д. В. Аналіз важких аварій в басейні витримки відпрацьованого ядерного палива АЕС «Фукусіма Даїчі» з використанням розрахункового коду MELCOR 1.8.6 // Ядерна та радіаційна безпека. 2016. № 4(72). С. 13–20.
4. Gauntt R. O., Cash J. E., Cole R. K. at al. MELCOR Computer Code Manuals, Vol. 1: Primer and User’s Guides. Version 1.8.6, Albuquerque. 2005. 785 р. NUREG/CR-6119.
5. Азаров С. І., Сидоренко В. Л., Задунай О. С. Щодо оцінки безпеки атомних станцій України // Техногенно-екологічна безпека. 2018. Вип. 3(1/2018). С. 58–63. http://doi.org/10.5281/zenodo.1182845.
6. Чернобыльская АЭС, ІІІ очередь. Хранилище отработавшего ядерного топлива (ХОЯТ), І очередь. Рабочий проект. Сборно-монолитный вариант. Общая поянительная записка. Раздел «а». 1983. 672 с.
7. Bolshov L., Strizhov V. SOCRAT – The System of Codes for Realistic Analysis of Severe Accidents. Proc. of Int. Congress on Advances in Nuclear Power Plants (ICAPP’06), Reno, NV, USA, June 4–8. 2006. Paper 6439.
8. Azarov S. I., Taranovsky A. V., Sydorenko V. L. Modeling of physical-chemical processes inside the Sarcophagus // Nuclear Power and the Environment. 2014. № 1(3). Р. 53–63.
9. Азаров С. І., Сидоренко В. Л., Євланов В. М., Гаврилюк М. М. Аналіз умов і механізмів формування вибухонебезпечних сумішей на ранній стадії розвитку Чорнобильської аварії // Ядерна та радіаційна безпека. 2016. Вип. 4. С. 39–44.
10. Baker L., Just L. Studies of metal-water reactions at hight temperatures. III Experimental and theoretical of the zirconitim-water reaction // ANI-6548-196. 1976. Р. 20–56.
11. Brown A. F., Healen T. The kinetics of total oxygen uptake in steam oxidized zircaloy-2 in range 1272-1673K // J. Nucl. Mater. 1980. Vol. 88(1). P. 1–6.