Improvement of method of assessment of environmental condition of territories adjoined with environmentally dangerous technogenic objects

V. Koloskov

 

DOI: 10.5281/zenodo.1401133

Received: 12 July 2018

Accepted: 15 August 2018

Published online: 21 August 2018

 

ABSTRACT

Assessment of environmental condition of territories adjoined with environmentally dangerous technogenic objects has to be accomplished considering complex multifactor environmental impacts. The process of the territory ecosystem functioning under the influence of environmentally dangerous technogenic object. It is found that territory’ environmental condition may be fully and uniquely displayed with its ecosystem response on negative impact. Significant responses of ecosystem are those characterizing degree of degradation processes in it. Two of responses calculated on the surface area and spread speed of degradation processes over the territory are resumptive from the point of assessment of the whole complex of technogenic object’ negative impacts. It is also found that ecosystem response on negative impact may be expressed as array of 36 indexes of energy flow through ecosystem according levels of its trophic structure. To narrow variety of significant indexes I have separated two of them which allow operative assessment of the territory’ environmental condition. They are productiveness of the first trophic level species (plants) and biomass amount of the forth trophic level species (supreme predators). The last index may be simplified by expressing it with the number of animals in corresponding species population. I have developed new criterion of the territory’ environmental condition assessment – environmental reserve criterion. According to mentioned criterion transformation of the critical environmental condition of the territory into catastrophic is designated with obtainment of zero value by environmental reserve level index. Further development of catastrophic ecosystem degradation is characterized with its values less than zero. Developed criterion takes into account both interrelations between elements of natural surrounding and result of impact of environmentally dangerous object on these elements. Implementation of new environmental reserve criterion makes the method of territories’ environmental condition assessment applicable for assessment of impact of any environmentally dangerous technogenic object same as for operative environmental safety control.

 

Keywords: environmentally dangerous technogenic object, environmental reserve, degradation degree.

 

REFERENCES

1. Balaceanu, C. M., Iordache, G. (2018). Assessment of the air pollution at the industrial stations in metropolitan area of Bucharest. Naukovo-tekhnichnyy zhurnal «Tekhnohenno-ekolohichna bezpeka», 3(1/2018), 8–15. doi: 10.5281/zenodo.1182485.

2. Vambol, S., Vambol, V., Kondratenko, O. et. al. (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3/10(87), 63–73. doi: 10.15587/1729-4061.2017.102314.

3. Voitiuk, Y. Y., Kuraieva, I. V., Kroik, A. A., Pavlychenko, A. V. (2014). Ecological and geochemical assessment of the soil contamination levels in the areas of metallurgical enterprises operation. Scientific Bulletin of National Mining University, 4, 45–51.

4. Vambol, S., Shakhov, Y., Vambol, V., Petukhov, I. (2016). A mathematical description of the separation of gas mixtures generated by the thermal utilization of waste. Eastern-European Journal of Enterprise Technologies, 1/2(79), 35–41. doi: 10.15587/1729-4061.2016.60486.

5. Rafiee, A., Delgado-Saborit, J. M., Gordi, E. et. al. (2018). Use of urinary biomarkers to characterize occupational exposure to BTEX in healthcare waste autoclave operators. Science of The Total Environment, 631, 857–865. doi: 10.1016/j.scitotenv.2018.03.090.

6. Kondratenko, O. M., Vambol, S. O., Strokov, O. P., Avramenko, A. M. (2015). Mathematical model of the efficiency of diesel particulate matter filter. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6/150, 55–61.

7. Alimardan, M., Ziarati, P., Moghadam, R. J. (2016). Adsorption of Heavy Metal Ions from Contaminated Soil by B. integerrima Barberry. Biomed Pharmacol J., 9(1), 169–175. doi: 10.13005/bpj/924.

8. Shmandy, V. M., Bezdenezhnykh, L. A., Kharlamova, E. V. (2012). The use of waste-derived adsorbents for improvement of the human environment. Gigiena i sanitaria, 6, 44–45.

9. Tiutiunyk, V. V., Ivanets, H. V., Tolkunov, І. A., Stetsyuk, E. I. (2018). System approach for readiness assessment units of civil defense to actions at emergency situations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 99–105. doi: 10.29202/nvngu/2018-1/7.

10. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finelydispersed water. Eastern-European Journal of Enterprise Technologies, 2/10 (92), 38–43. doi: 10.15587/1729-4061.2018.127865.

11. Vambol, V. (2016). Numerical integration of the process of cooling gas formed by thermal recycling of waste. Eastern-European Journal of Enterprise Technologies, 6/8(84), 48–53. doi: 10.15587/1729-4061.2016.85455.

12. Mozafari, A., Tabrizi, F. F., Farsi, M., Mousavi, S. A. H. S. (2017). Thermodynamic modeling and optimization of thermolysis and air gasification of waste tire. Journal of Analytical and Applied Pyrolysis, 126, 415–422. doi: 10.1016/j.jaap.2017.04.001.

13. Janajreh, I., Raza, S. S., Valmundsson A. S. (2013). Plasma gasification process: modeling, simulation and comparison with conventional air gasification. Energy Conversion and Management, 65, 801–809. doi: 10.1016/j.enconman.2012.03.010.

14. Jadhao, S. B., Shingade, S. G., Pandit, A. B., Bakshi, B. R. (2017). Bury, burn, or gasify: assessing municipal solid waste management options in Indian megacities by exergy analysis. Clean Technologies and Environmental Policy, 19 (5), 1403–1412. doi: 10.1007/s10098-017-1338-9.

15. Vambol, S., Vambol, V., Bogdanov, I. et. al. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern-European Journal of Enterprise Technologies, 6/10(90),
57–64. doi: 10.15587/1729-4061.2017.118213.

16. Rafiee, A., Gordi, E., Lu, W., Miyata, Y., Shabani, H., Mortezazadeh, S., Hoseini, M. (2018). The impact of various festivals and events on recycling potential of municipal solid waste in Tehran, Iran. Journal of Cleaner Production, 183, 77–86. doi: 10.1016/j.jclepro.2018.02.118.

17. International Association of Fire and Rescue Service. (2018). World Fire Statistics Magazine, 2017(22). Availablehttp://www.ctif.org/world-fire-statistics (date of treatment: 30.05.2018).

18. Living Planet Report 2006. WWF International. Gland, Switzerland, 2007. Available: http://wwf.panda.
org/knowledge_hub/all_publications/living_planet_report_timeline/lpr_2006/ (date of treatment: 28.05.2018).

19. Users Guide to the GLOBAL DIGITAL DATABASE (1991). Global Assessment of Human Induced Soil Degradation (GLASOD), 230.

20. Leung, W., Noble, B. F., Jaeger, J. A. G., Gunn, J. A. E. (2016). Disparate perceptions about uncertainty consideration and disclosure practices in environmental assessment and opportunities for improvement. Environmental Impact Assessment Review, 57, 89–100. doi: 10.1016/j.eiar.2015.11.001.

21. Ji, C, Hong, T. (2016). Comparative analysis of methods for integrating various environmental impacts as a single index in life cycle assessment. Environmental Impact Assessment Review, 57, 123–133. doi: 10.1016/j.eiar.2015.11.013.

22. Aydi, A., Zairi, M., Dhia, H. B. (2013). Minimization of environmental risk of landfill site using fuzzy logic, analytical hierarchy process, and weighted linear combination methodology in a geographic information system environment. Environmental Earth Sciences, 68(5), 1375–1389. doi: 10.1007/s12665-012-1836-3.

23. Webb, J. A., Schofield, K., Peat, M. et. al. (2017). Weaving common threads in environmental causal assessment methods: toward an ideal method for rapid evidence synthesis. Freshwater Science, 36(1), 250–256. doi: 10.1086/690449.

24. Melcher, A. H., Bakken, T. H., Friedrich, Th. et. al. (2017). Drawing together multiple lines of evidence from assessment studies of hydropeaking pressures in impacted rivers. Freshwater Science, 36(1), 220–231. doi: 10.1086/690295.

25. Norton, S. B., Schofield, K. A. (2017). Conceptual model diagrams as evidence scaffolds for environmental assessment and management. Freshwater Science, 36(1), 231–239. doi: 10.1086/690296.

26. Nichols, S. J., Peat, M., Webb, J. A. (2017). Challenges for evidence-based environmental management: what is acceptable and sufficient evidence of causation? Freshwater Science, 36(1), 240–249. doi: 10.1086/690106.

27. Belogurov, V. P. (2014). Elaboration of a methodology for integral estimation of ecological state of territories. Eastern-European Journal of Enterprise Technologies, 5/10(71), 25–29. doi: 10.15587/1729-4061.2014.28173.

28. Kozulia, T. V., Yemelianova, D. I., Kozulia, M. M. (2014). Complex ecological estimation of natural and manmade complexes which basis on MIPS- and risk analysis. Eastern-European Journal of Enterprise Technologies, 3/10(69), 8–13. doi: 10.15587/1729-4061.2014.24624.

29. Jevropejs'kyj parlament ta Rada Jevropejs'kogo Sojuzu (2006). Vodna ramkova dyrektyva EC 2000/60/EC. Osnovni terminy ta i'h vyznachennja. Kyiyv, Konsorcium kompanij RODECO-VERSeau–WRc, 240.

30. Zerkalov, D. V. (2011). Ekologichna bezpeka ta ohorona dovkillja: monografija. Kyiyv. 517.

31. Kriterii ocenki jekologicheskoj obstanovki territorij dlja vyjavlenija zon chrezvychajnoj jekologicheskoj situacii i zon jekologicheskogo bedstvija (1992). Moscow. 51.

32. European economic commission UN (2007). Monitoring okruzhajushhej sredy: rukovodstvo po primeneniju jekologicheskih pokazatelej v stranah Vostochnoj Evropy, Kavkaza i central'noj Azii. European economic commission UN, 108. Available: http://www.unece.org/ fileadmin/DAM/env/europe/monitoring/Belgrade/CRP1.Indicators.Ru.MK.pdf.

33. Plyatsuk, L. D., Chernish, E. Yu., Plyatsuk, D. L. (2014). Synergetics: ecosystem processes. Transactions of Kremenchuk Mykhailo Ostrohradskyi National University, 6/2014(89), 137–142.

34. Prykhodko, M. М. (2012). Theoretical and methodological fundamentals of geosystems’ ecological safety. The scientific issues of Ternopil Volodymyr Hnatiuk National pedagogical university. Series: geography, 1(31), 179–191.

35. Vambol, S. O., Koloskov, V. Yu, Derkach, Yu. F. (2017). Assessment of environmental condition of territories adjoined to wastes storage places based on environmental reserve criterion. Naukovo-tekhnichnyy zhurnal «Tekhnohenno-ekolohichna bezpeka», 2, 67–72.

36. Odum, Yu. (1986). Ecology. Vol. 1. Moscow, 238.

37. Vambol, S. O., Vambol, V. V., Koloskov, V. Yu., Derkach, Yu. F. (2016). Forecasting of safety level of unauthorized landfill based on simulation modelling. Environmental safety, 2/2016(22), 51–58.

 

ЛІТЕРАТУРА

1. Balaceanu C. M., Iordache G. Assessment of the air pollution at the industrial stations in metropolitan area of Bucharest // Техногенно-екологічна безпека. 2018. Issue 3(1/2018). P. 8–15. doi: 10.5281/zenodo.1182485.

2. Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization / Vambol S., Vambol V., Kondratenko O., Suchikova Y., Hurenko O. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 3, Issue 10(87). Р. 63–73. doi: 10.15587/1729-4061.2017.102314.

3. Ecological and geochemical assessment of the soil contamination levels in the areas of metallurgical enterprises operation / Voitiuk Y. Y., Kuraieva I. V., Kroik A. A., Pavlychenko A. V. // Scientific Bulletin of National Mining University. 2014. Issue 4. Р. 45–51.

4. A mathematical description of the separation of gas mixtures generated by the thermal utilization of waste / Vambol S., Shakhov Y., Vambol V., Petukhov I. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 1, Issue 2(79). Р. 35–41. doi: 10.15587/1729-4061.2016.60486.

5. Use of urinary biomarkers to characterize occupational exposure to BTEX in healthcare waste autoclave operators / Rafiee A., Delgado-Saborit J. M., Gordi E., Quémerais B., Moghadam V. K., Lu W., Hashemi F., Hoseini M. // Science of The Total Environment. 2018. Issue 631. P. 857–865. doi: 10.1016/j.scitotenv.2018.03.090.

6. Mathematical model of the efficiency of diesel particulate matter filter / Kondratenko O. M., Vambol S. O., Strokov O. P., Avramenko A. M. // Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2015. Vol. 6, Issue 150. P. 55–61.

7. Alimardan M., Ziarati P., Moghadam R. J. Adsorption of Heavy Metal Ions from Contaminated Soil by B. integerrima Barberry // Biomed Pharmacol J. 2016. Vol. 9, Issue 1. P. 169-175. doi: 10.13005/bpj/924

8. Шмандий В. М., Безденежных Л. А., Харламова Е. В. Использование адсорбентов, полученных из отходов, для улучшения состояния среды обитания человека // Гигиена и санитария. 2012. № 6. С. 44–45.

9. System approach for readiness assessment units of civil defense to actions at emergency situations / Tiutiunyk V. V., Ivanets H. V., Tolkunov І. A., Stetsyuk E. I. // Науковий вісник Національного гірничого університету. 2018. № 1. С. 99–105. doi: 10.29202/nvngu/2018-1/7.

10. Improving the installation for fire extinguishing with finelydispersed water / Dubinin D., Korytchenko K., Lisnyak A., Hrytsyna I., Trigub V. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2, Issue 10(92). P. 38–43. doi: 10.15587/1729-4061.2018.127865.

11. Vambol V. Numerical integration of the process of cooling gas formed by thermal recycling of waste // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 6, Issue 8(84). P. 48–53. doi: 10.15587/1729-4061.2016.85455.

12. Thermodynamic modeling and optimization of thermolysis and air gasification of waste tire / Mozafari A., Tabrizi F. F., Farsi M., Mousavi S. A. H. S. // Journal of Analytical and Applied Pyrolysis. 2017. Vol. 126. P. 415–422. doi: 10.1016/j.jaap.2017.04.001.

13. Janajreh I., Raza S. S., Valmundsson A. S. Plasma gasification process: Modeling, simulation and comparison with conventional air gasification // Energy Conversion and Management. 2013. Vol. 65. P. 801–809. doi: 10.1016/j.
enconman.2012.03.010.

14. Bury, burn, or gasify: assessing municipal solid waste management options in Indian megacities by exergy analysis / Jadhao S. B., Shingade S. G., Pandit A. B., Bakshi B. R. // Clean Technologies and Environmental Policy. 2017. Vol. 19, Issue 5. P. 1403–1412. doi: 10.1007/s10098-017-1338-9.

15. Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere / Vambol S., Vambol V., Bogdanov I., Suchikova Y., Rashkevich N. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 6, Issue 10 (90). P. 57–64. doi: 10.15587/1729-4061.2017.118213.

16. The impact of various festivals and events on recycling potential of municipal solid waste in Tehran, Iran / Rafiee A., Gordi E., Lu W., Miyata Y., Shabani H., Mortezazadeh S., Hoseini M. // Journal of Cleaner Production. 2018. Vol. 183. P. 77–86. doi: 10.1016/j.jclepro.2018.02.118.

17. World Fire Statistics // World Fire Statistics Magazine.2017. Issue 22. Available: http://www.ctif.org/world-fire-statistics (дата звернення: 30.05.2018).

18. Living Planet Report 2006. WWF International / Gland, Switzerland, 2007. Available: http://wwf.panda.org/knowledge_hub/all_publications/living_planet_report_timeline/lpr_2006/.

19. Global Assessment of Human Induced Soil Degradation (GLASOD) / Users Guide to the GLOBAL DIGITAL DATABASE, 1991. 230 p.

20. Disparate perceptions about uncertainty consideration and disclosure practices in environmental assessment and opportunities for improvement / Leung W., Noble B. F., Jaeger J. A. G., Gunn J. A. E. // Environmental Impact Assessment Review. 2016. Vol. 57. P. 89–100. doi: 10.1016/j.eiar.2015.11.001.

21. Ji C., Hong T. Comparative analysis of methods for integrating various environmental impacts as a single index in life cycle assessment // Environmental Impact Assessment Review. 2016. Vol. 57. P. 123–133. doi: 10.1016/j.eiar.2015.11.013.

22. Aydi A., Zairi M., Dhia H. B. Minimization of environmental risk of landfill site using fuzzy logic, analytical hierarchy process, and weighted linear combination methodology in a geographic information system environment // Environmental Earth Sciences. 2013. Vol. 68, Issue 5. P. 1375–1389. doi: 10.1007/s12665-012-1836-3.

23. Weaving common threads in environmental causal assessment methods: toward an ideal method for rapid evidence synthesis / Webb J. A., Schofield K., Peat M., Norton B. S., Nichols S. J., Melcher A. // Freshwater Science. 2017. Vol. 36, Issue 1. P. 250–256. doi: 10.1086/690449.

24. Drawing together multiple lines of evidence from assessment studies of hydropeaking pressures in impacted rivers / Melcher A. H., Bakken T. H., Friedrich Th., Greimel F., Humer N., Shmutz S., Zeiringer B., Webb J. A. // Freshwater Science. 2017. Vol. 36, Issue 1. P. 220–231. doi: 10.1086/690295.

25. Norton S. B., Schofield K. A. Conceptual model diagrams as evidence scaffolds for environmental assessment and management // Freshwater Science. 2017. Vol. 36, Issue 1. P. 231–239. doi: 10.1086/690296.

26. Nichols S. J., Peat M., Webb J. A. Challenges for evidence-based environmental management: what is acceptable and sufficient evidence of causation? // Freshwater Science. 2017. Vol. 36, Issue 1. P. 240–249. doi: 10.1086/690106.

27. Белогуров В. П. Разработка методологии интегрального оценивания экологического состояния территорий // Східно-Європейський журнал передових технологій. 2014. № 5/10(71). С. 25–29.

28. Козуля Т. В., Ємельянова Д. І., Козуля М. М. Комплексна екологічна оцінка природно-техногенних комплексів на основі MIPS- і ризик-аналізу // Східно-Європейський журнал передових технологій. 2014. № 3/10(69). С. 8–13.

29. Водна рамкова директива ЄС 2000/60/EC. Основні терміни та їх визначення / Європейський парламент та Рада Європейського Союзу. Киев: Консорціум компаній RODECO-VERSeau–WRc, 2006. 240 с.

30. Зеркалов Д. В. Екологічна безпека та охорона довкілля: монографія. Киев, 2011. 517 с.

31. Критерии оценки экологической обстановки территорий для выявления зон чрезвычайной экологической ситуации и зон экологического бедствия. Москва, 1992. 51 с.

32. Мониторинг окружающей среды: руководство по применению экологических показателей в странах Восточной Европы, Кавказа и центральной Азии / Европейская экономическая комиссия ООН. 2007. 108 с. Режим доступу: http://www.unece.org/ fileadmin/DAM/env/europe/monitoring/Belgrade/CRP1.Indicators.Ru.MK.pdf.

33. Пляцук Л. Д., Черныш Е. Ю., Пляцук Д. Л. Синергетика: экосистемные процессы // Вісник КрНУ імені Михайла Остроградського. 2014. Вип. 6/2014(89). Ч.1. С. 137–142.

34. Приходько М. М. Теоретико-методологічні основи екологічної безпеки геосистем // Наукові записки Тернопільського національного педагогічного університету. Серія: географія. 2012. № 1(31). С. 179–191.

35. Вамболь С. О., Колосков В. Ю., Деркач Ю. Ф. Оцінювання екологічного стану територій, прилеглих до місць зберігання відходів, на основі критерію екологічного резерву // Техногенно-екологічна безпека. 2017. Вип. 2. С. 67–72.

36. Одум Ю. Экология: в 2 т. Т. 1. Москва, 1986. 238 с.

37. Прогнозування рівня безпеки несанкціонованого сміттєзвалища з використанням імітаційного моделювання / Вамболь С. О., Вамболь В. В., Колосков В. Ю., Деркач Ю. Ф. // Екологічна безпека. 2016. № 2/2016(22) С. 51‑58.