Determination and analysis of criterion components of the environmental safety assessment of engineered nanomaterials

I. Bogdanov, Y. Suchikova, S. Kovachov

 

DOI: 10.5281/zenodo.1406974

Received: 19 July 2018

Accepted: 28 August 2018

Published online: 31 August 2018

  ABSTRACT

The specific properties of nanotechnologies open up broad prospects for the purposeful production of nanomaterials with enhanced properties. However, along with this, very few studies have been conducted to identify the negative environmental impact of nanomaterials on the environment and the human body. In the production of engineering nanomaterials, their operation (due to abrasion and wear), as well as during utilization (processing) or placement in waste storage areas, it is possible to release nanoparticles into the atmospheric air and groundwater. The developed criterion of ecological safety of engineering nanomaterials is presented.The components of this criterion are defined. The components of the criterion are particular criteria that assess the safety of a material by the presence of nanophases in it, proximity to a person, the possibility of exposure and potential danger. The characteristics of engineering nanomaterials that determine the impact on the state of the environment and human health are established and should be controlled. These include morphological, physico-chemical and molecular-biological. An algorithm for determining the hazard level of products, which can contain nanoobjects, and an algorithm for carrying out environmental impact assessment according to the proposed scale is presented. The scale of the degree of potential hazard of engineering nanomaterials contains three levels: high, medium and low. Such a scale is universal and allows assessing the dangers of nanomaterials and substances that can contain nanoparticles. The complex of measures for the evaluation and analysis of nanomaterials that need to be carried out to ensure environmental safety when using nanomaterials of different levels of danger is analyzed. Classification of nanoindustry products by the degree of potential danger to public health and habitat will minimize the negative impact of engineering nanomaterials on the environment and increase the level of environmental safety and rational nature management.

 Keywords: engineered nanomaterials; nanoparticle; environmental safety; criteria of assessment; state of environment.

 

REFERENCES

1. NIOSH (2013). Current strategies for engineering controls in nanomaterial production and downstream handling processes. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2014–102. Available: https://www.cdc.gov/niosh/docs/2014-102/pdfs/2014-102.pdf.

2. Seear, K., Petersen, A., Bowman, D. (2009). The social and economic impacts of nanotechnologies: a literature review. Final Report Prepared for the Department of Innovation, Industry, Science and Research, Monash University Victoria, Australia. Available: https://www.researchgate.net/publication/242513451_The_Social_and_Economic_
Impacts_of_Nanotechnologies_A_Literature_Review.

3. Sengul, H., Theis, T. L., Ghosh, S. (2008). Toward sustainable nanoproducts: An overview of nanomanufacturing methods. Journal of Industrial Ecology, 12(3), 329–359.

4. Meyer, D. Е., Curran, M. A., Gonzalez, M. A. (2009). An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environmental Science and Technology, 43(5), 1256–1263.

5. Zhang, Q. et al. (2013). Review on mass production and industrialization of carbon nanotubes. Scientia sinica chimica, 43(6), 641–666.

6. Sparvolia, M., Mansanoa, R. D., Chubacib, J. F. D. (2013). Study of indium nitride and indium oxynitride band gaps. Materials research, 16(4), 850–852.

7. Vambol, S., Bogdanov, I., Vambol, V. et al. (2017). Research into regularities of pore formation on the surface of semiconductors. Eastern–European Journal of Enterprise Technologies, 3/5(87), 37–44. doi: 10.15587/1729-4061.2017.104039.

8. Linkov, I., Satterstrom, F. K., Monica Jr, J. C., Foss, S. (2009). Nano risk governance: current developments and future perspectives. Nanotechnology Law and Business, 6, 203.

9. Labib, S., Williams, A., Yauk, C. L., Nikota, J. K., Wallin, H., Vogel, U., Halappanavar, S. (2015). Nano-risk science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes. Particle and fibre toxicology, 13(1), 15.

10. Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern–European Journal of Enterprise Technologies, 6/10(90), 57–64. doi: 10.15587/1729-4061.2017.118213.

11. Bohdanov, I. T., Sychikova, Y. O., Vambol, S. O., Vambol, V. V. (2018). Zabezpechennya ekolohichnoyi bezpeky nanomaterialiv cherez upravlinnya yakistyu nanostruktur. Naukovo-tekhnichnyy zhurnal «Tekhnohenno-ekolohichna bezpeka», 3(1/2018), 21–27. doi: 10.5281/zenodo.1182493.

12. Watson-Wright, C., Singh, D., Demokritou, P. (2017). Toxicological implications of released particulate matter during thermal decomposition of nano-enabled thermoplastics. NanoImpact, 5, 29–40. Available: http://www.sciencedirect
.com/science/article/pii/S2452074816301033. – doi.org/10.1016/j.impact.2016.12.003.

13. Seager, T. P., Linkov, I. (2008). Coupling multicriteria decision analysis and life cycle assessment for nanomaterials. Journal of Industrial Ecology, 12(3), 282–285.

14. Marassi V. et al. (2015). Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment. Journal of pharmaceutical and biomedical analysis, 106, 92–99.

15. Zhang, J., Wang, X., Xu, T. (2007). Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicological sciences, 101(1), 22–31.

16. Warheit, D. B. et al. (2008). Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacology & therapeutics, 120(1), 35–42.

17. Coll, C. et al. (2016). Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology, 10(4), 436–444.

18. Braun, K. V. E. et al. (2018). The role of epigenetic modifications in cardiometabolic diseases. Epigenetics of Aging and Longevity, 4, 347–364. doi: 10.1016/B978-0-12-811060-7.00017-6.

19. Kolesnyk, V. Ye., Pavlychenko, A. V., Buchavyy, Yu. V. (2018). Unifikovana metodyka kompleksnoho otsinyuvannya rivnya ekolohichnoyi nebezpeky promyslovykh obʺyektiv ta tekhnolohiy. Naukovo-tekhnichnyy zhurnal «Tekhnohenno-ekolohichna bezpeka», 3(1/2018), 64–69. doi: 10.5281/zenodo.1182847.

20. Hjorth, R., Holden, P. A., Hansen, S. F., Colman, B. P., Grieger, K., Hendren, C. O. (2017). The role of alternative testing strategies in environmental risk assessment of engineered nanomaterials. Environmental science: Nano, 4(2), 292–301.

21. Kah, M. (2015). Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Frontiers in chemistry, 3, 64. doi: 10.3389/fchem.2015.00064.

22. International union of pure and applied chemistry: recommendations on organic & biochemical nomenclature, symbols & terminology etc. Available: http://www.sbcs.qmul.ac.uk/iupac/.

 

ЛІТЕРАТУРА

1. NIOSH (2013). Current strategies for engineering controls in nanomaterial production and downstream handling processes. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2014–102. Available: https://www.cdc.gov/niosh/docs/2014-102/pdfs/2014-102.pdf.

2. Seear K., Petersen A., Bowman D. The social and economic impacts of nanotechnologies: a literature review. Final Report Prepared for the Department of Innovation, Industry, Science and Research, Monash University Victoria, Australia. 2009. Available: https://www.researchgate.net/publication/242513451_The_Social_and_Economic_Impacts_of_Nanotech
nologies_A_Literature_Review.

3. Sengul H., Theis T. L., Ghosh S. Toward sustainable nanoproducts: An overview of nanomanufacturing methods // Journal of Industrial Ecology. 2008. Vol. 12, Issue 3. Р. 329–359.

4. Meyer D. Е., Curran M. A., Gonzalez M. A. An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts // Environmental Science and Technology. 2009. Vol. 43, Issue 5. Р. 1256–1263.

5. Review on mass production and industrialization of carbon nanotubes / Zhang Q. et al. // Scientia Sinica Chimica. 2013. Vol. 43, Issue 6. P. 641–666.

6. Sparvolia M., Mansanoa R. D., Chubacib J. F. D. Study of Indium Nitride and Indium Oxynitride Band Gaps // Materials Research. 2013. Vol. 16, Issue 4. P. 850–852.

7. Research into regularities of pore formation on the surface of semiconductors / Vambol, S., Bogdanov, I., Vambol, V. et al. // Eastern–European Journal of Enterprise Technologies. 2017. Vol. 3/5, Issue 87. Р. 37–44. doi: 10.15587/1729-4061.2017.104039.

8. Nano risk governance: current developments and future perspectives / Linkov I., Satterstrom F. K., Monica Jr J. C., Foss S. // Nanotechnology Law and Business. 2009. Vol. 6. P. 203.

9. Nano-risk science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes / Labib S., Williams A., Yauk C. L. et al. // Particle and fibre toxicology. 2015. Vol. 13, Issue 1. P. 15.

10. Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere / Vambol S., Vambol V., Bogdanov I. et al. // Eastern–European Journal of Enterprise Technologies. 2017. Vol. 6/10, Issue 90. P. 57–64. doi: 10.15587/1729-4061.2017.118213.

11. Забезпечення екологічної безпеки наноматеріалів через управління якістю наноструктур // Богданов І. Т., Сичікова Я. О., Вамболь С. О., Вамболь В. В. // Техногенно-екологічна безпека. 2018. Вип. 3(1/2018). С. 21–27. doi: 10.5281/zenodo.1182493.

12. Watson-Wright C. Singh D., Demokritou P. Toxicological implications of released particulate matter during thermal decomposition of nano-enabled thermoplastics // NanoImpact. 2017. Vol. 5. Р. 29–40. Available: http://www.sciencedirect.com/science/article/pii/S2452074816301033. – doi.org/10.1016/j.impact.2016.12.003.

13. Seager T. P., Linkov I. Coupling multicriteria decision analysis and life cycle assessment for nanomaterials // Journal of Industrial Ecology. 2008. Vol. 12, Issue 3. Р. 282–285.

14. Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment / Marassi V. et al. // Journal of pharmaceutical and biomedical analysis. 2015. Vol. 106. Р. 92–99.

15. Zhang J., Wang X., Xu T. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice // Toxicological sciences. 2007. Vol. 101, Issue 1. Р. 22–31.

16. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks / Warheit D. B. et al. // Pharmacology & therapeutics. 2008. Vol. 120, Issue 1. Р. 35–42.

17. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes) / Coll C. et al. // Nanotoxicology. 2016. Vol. 10, Issue 4. P. 436–444.

18. The role of epigenetic modifications in cardiometabolic diseases / Braun K. V. E. et al. // Epigenetics of Aging and Longevity. 2018. Vol. 4. P. 347–364. doi: 10.1016/B978-0-12-811060-7.00017-6.

19. Колесник, В. Є., Павличенко, А. В., Бучавий Ю. В. Уніфікована методика комплексного оцінювання рівня екологічної небезпеки промислових об’єктів та технологій // Техногенно-екологічна безпека. 2018. Вип. 3(1/2018). С. 64–69. doi: 10.5281/zenodo.1182847.

20. The role of alternative testing strategies in environmental risk assessment of engineered nanomaterials / Hjorth R., Holden P. A., Hansen S. F. et al. // Environmental science: Nano. 2017. Vol. 4, Issue 2. P. 292–301.

21. Kah M. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? // Frontiers in chemistry. 2015. Vol. 3. P. 64. doi: 10.3389/fchem.2015.00064.

22. International union of pure and applied chemistry: recommendations on organic & biochemical nomenclature, symbols & terminology etc. Available: http://www.sbcs.qmul.ac.uk/iupac/.