Study of the effectiveness of the use of biodestructors for liquidation of oil slicks on the water surface in emergency situations

V. Vambol, G. Krusir, K. Nuzhna, E. Zaitseva, A. Kaluzhskykh

 

DOI: 10.5281/zenodo.2529953

Received: 5 December 2018

Accepted: 13 December 2018

Published online: 15 December 2018

 

ABSTRACT

One of the main factors creating the unfavorable state of the aquatic environment is shipping and the activities of sea trading ports. Special danger is represented by emergency situations with the spreading of a large amount of oil products. Each year, about 10 million tons of oil and petroleum products fall on surface water. This study presents the results of an experiment on the effectiveness of the use of a sorbent-biodestructor for the elimination of oil pollution in emergency situations. Analysis of the main types of biodestructors, which used in Ukraine for the elimination of oil spills from the water surface, carried out analytically using open sources of information. Determination of the effectiveness of the use of biodestructors was carried out in laboratory conditions. Experimentally, a change in the layer thickness of the oil product was observed depending on the time of action of the biodestructor with a different amount of sorbent used. The study of the presence of biological components in the composition of a biodestructor was carried out using a scanning electron microscope with a low-vacuum chamber and with the REM-106 microelectronic microanalysis system. Two samples were examined in a low-vacuum chamber in reflected electrons. Determined that, it is immobilized bacteria-destructors of petroleum hydrocarbons that are widely used in modern environmental biotechnologies. Experimentally installed, that the quality of adsorption does not depend on the time the sorbent stays on the spot. The use of a biodestructor for the elimination of oil pollution from the water surface is advisable as an additional purification stage aimed at the adsorption of thin oil slicks in large-scale man-made disasters. The study using a scanning electron microscope with a low vacuum chamber and with a REM-106 energy dispersive microanalysis system showed that the ecological efficiency of the use of such a sorbent cannot be at a high level, since there is an uneven distribution of microorganisms and it clusters. At the same time, the required number of bacteria (107 per 1 g of substance) is not ensured.

 Keywords: environmental safety waterbodies; emergency with oil spill; efficiency of biodestructor.

 REFERENCES

1. Liu, A., Ma, Y., Gunawardena, J. M. A. et al. (2018). Heavy metals transport pathways: The importance of atmospheric pollution contributing to stormwater pollution. Ecotoxicology and Environmental Safety, 164, 696–703. doi: 10.1016/j.ecoenv.2018.08.072.

2. Balaceanu, C. M., Iordache, G. (2018). Assessment of the air pollution at the industrial stations in metropolitan area of Bucharest. Technogenic and ecological safety, 3(1/2018), 8–15. doi: 10.5281/zenodo.1182485.

3. Vambol, S. O., Koloskov, V. Yu, Derkach, Yu. F. (2017). Otsinyuvannya ekolohichnoho stanu terytoriy, prylehlykh do mistsʹ zberihannya vidkhodiv, na osnovi kryteriyu ekolohichnoho rezervu. Technogenic and ecological safety, 2, 67–72.

4. Abdu, N., Abdullahi, A. A., Abdulkadir, A. (2017). Heavy metals and soil microbes. Environmental Chemistry Letters, 15(1), 65–84. doi: 10.1007/s10311-016-0587-x.

5. Barsukova, G. (2018). Development of mathematical model of infiltration of iron sulfate acid solution. Technogenic and ecological safety, 4(2/2018), 99–104. doi: 10.5281/zenodo.1463022.

6. Sundararajan, M., Vambol, V., Vambol, S., Kumari, N., Ansari, I. (2018). Nutrient dispersion modeling of coal overburden dumps for reclamation and sustainable management. Technogenic and ecological safety, 4(2/2018), 86–98. doi: 10.5281/zenodo.1433544.

7. Ziarati, P., Namvar, S., Sawicka, B. (2018). Heavy metals bio-adsorrption by Hibiscus Sabdariffa L. from contaminated weater. Technogenic and ecological safety, 4(2/2018), 22–32. doi: 10.5281/zenodo.1244568.

8. Li, M., Cheng, X., Chen, Y. (2018). Study on practice of improving water quality in urban rivers by diverting clean water (Version 10009184). International Journal of Architectural, Civil and Construction Sciences, 11.0(4). Available: http://doi.org/10.5281/zenodo.1317226.

9. Loboychenko, V. M., Vasyukov, O. Ê. (2017). Otsinka vplyvu antropohennoyi diyalʹnosti na stan poverkhnevykh vod vodoymyshch za parametrom pytomoyi elektroprovidnosti. Technogenic and ecological safety, 2, 35–39.

10. Razlivy nefti v akvatoriyakh Chernogo i Azovskogo morey: chto delat'. Available: https://news.liga.net/economics/pr/razlivy_nefti_v_akvatoriyakh_chernogo_i_azovskogo_morey_chto_delat – 19.09.2018.

11. V Azovskom more obnaruzhili razliv nefti. Available: https://www.blackseanews.net/read/145286.

12. Mazut v Dnepre: vzyali proby vody, zasedayet komissiya. Available: https://www.ukrinform.ru/rubric-regions/2163906-mazut-v-dnepre-vzali-proby-vody-zasedaet-komissia.html.

13. V vodakh Kanady proizoshla utechka nefti. Available: https://www.rbc.ua/rus/news/vodah-kanady-proizoshla-utechka-nefti-1542427678.html.

14. Abdusamadov, A. S., Panarin, A. P., Magomedov, A. K. et al. (2012). Rastvorimost' i destruktsiya nefti v morskoy vode. Geography and geoecology, 1, 165–166.

15. Meropriyatiya po okhrane poverkhnostnykh i podzemnykh vod. Available: https://revolution.allbest.ru/ecology/00465851_1.html.

16. Sorbent prirodnyy glaukonit dlya ochistki vody v kolodtse. Available: https://prom.ua/p768014042-sorbent-prirodnyj-glaukonit.html.

17. Biopreparat "Ekonadin" – sorbent biodestruktor uglevodorodov nefti. Available: https://www.econad.com.ua/index.php?page=8.

18. Sorbent torfyanoy granulirovannyy dlya ochistnykh sooruzheniy AZS, STO i neftebaz. Available: https://prom.ua/p2500285-sorbent-torfyanoj-granulirovannyj.html.

19. Skimer oleofilʹnyy "SOM". Available: http://kraspubl.ru/NaruzhnayaOtdelkaBalkona/sk-mmer-oleof-lniy-som.

20. Nazarenko, S. K., Arkhypova, L. M. (2017). Suchasni metody likvidatsiyi avariynykh rozlyviv nafty na vodnykh obʺyektakh sukhodolu. Available: http://194.44.112.13/journals/4776p.pdf.

 

ЛІТЕРАТУРА

1. Heavy metals transport pathways: The importance of atmospheric pollution contributing to stormwater pollution / Liu A., Ma Y., Gunawardena J. M. A. et al. // Ecotoxicology and Environmental Safety. 2018. Vol. 164. P. 696–703. doi: 10.1016/j.ecoenv.2018.08.072.

2. Balaceanu C. M., Iordache G. Assessment of the air pollution at the industrial stations in metropolitan area of Bucharest // Technogenic and ecological safety. 2018. Vol. 3(1/2018). P. 8–15. doi: 10.5281/zenodo.1182485.

3. Vambol S. O., Koloskov V. Yu, Derkach Yu. F. Otsinyuvannya ekolohichnoho stanu terytoriy, prylehlykh do mistsʹ zberihannya vidkhodiv, na osnovi kryteriyu ekolohichnoho rezervu // Technogenic and ecological safety. 2017. Vol. 2. P. 67–72.

4. Abdu N., Abdullahi A. A., Abdulkadir A. Heavy metals and soil microbes // Environmental Chemistry Letters. 2017. Vol. 15, Issue 1. P. 65–84. doi: 10.1007/s10311-016-0587-x.

5. Barsukova G. Development of mathematical model of infiltration of iron sulfate acid solution // Technogenic and ecological safety. 2018. Vol. 4(2/2018). P. 99–104. doi: 10.5281/zenodo.1463022.

6. Nutrient dispersion modeling of coal overburden dumps for reclamation and sustainable management / Sundararajan M., Vambol V., Vambol S. et al. // Technogenic and ecological safety. 2018. Vol. 4(2/2018). P. 86–98. doi: 10.5281/zenodo.1433544.

7. Ziarati P., Namvar S., Sawicka B. Heavy metals bio-adsorrption by Hibiscus Sabdariffa L. from contaminated weater // Technogenic and ecological safety. 2018. Vol. 4(2/2018). P. 22–32. doi: 10.5281/zenodo.1244568.

8. Li M., Cheng X., Chen Y. Study on practice of improving water quality in urban rivers by diverting clean water (Version 10009184) // International Journal of Architectural, Civil and Construction Sciences. 2018. Vol. 11.0(4). Available: http://doi.org/10.5281/zenodo.1317226.

9. Loboychenko V. M., Vasyukov O. Ê. Otsinka vplyvu antropohennoyi diyalʹnosti na stan poverkhnevykh vod vodoymyshch za parametrom pytomoyi elektroprovidnosti // Technogenic and ecological safety. 2017. Vol. 2. P. 35–39.

10. Razlivy nefti v akvatoriyakh Chernogo i Azovskogo morey: chto delat'. Available: https://news.liga.net/economics/pr/razlivy_nefti_v_akvatoriyakh_chernogo_i_azovskogo_morey_chto_delat – 19.09.2018.

11. V Azovskom more obnaruzhili razliv nefti. Available: https://www.blackseanews.net/read/145286.

12. Mazut v Dnepre: vzyali proby vody, zasedayet komissiya. Available: https://www.ukrinform.ru/rubric-regions/2163906-mazut-v-dnepre-vzali-proby-vody-zasedaet-komissia.html.

13. V vodakh Kanady proizoshla utechka nefti. Available: https://www.rbc.ua/rus/news/vodah-kanady-proizoshla-utechka-nefti-1542427678.html.

14. Rastvorimost' i destruktsiya nefti v morskoy vode / Abdusamadov, A. S., Panarin, A. P., Magomedov, A. K. et al. // Geography and geoecology. 2012. Vol. 1. P. 165–166.

15. Meropriyatiya po okhrane poverkhnostnykh i podzemnykh vod. Available: https://revolution.allbest.ru/ecology/00465851_1.html.

16. Sorbent prirodnyy glaukonit dlya ochistki vody v kolodtse. Available: https://prom.ua/p768014042-sorbent-prirodnyj-glaukonit.html.

17. Biopreparat "Ekonadin" – sorbent biodestruktor uglevodorodov nefti. Available:https://www.econad.com.ua/index.php?page=8.

18. Sorbent torfyanoy granulirovannyy dlya ochistnykh sooruzheniy AZS, STO i neftebaz. Available: https://prom.ua/p2500285-sorbent-torfyanoj-granulirovannyj.html.

19. Skimer oleofilʹnyy "SOM". Available: http://kraspubl.ru/NaruzhnayaOtdelkaBalkona/sk-mmer-oleof-lniy-som.

20. Nazarenko S. K., Arkhypova L. M. Suchasni metody likvidatsiyi avariynykh rozlyviv nafty na vodnykh obʺyektakh sukhodolu. Available: http://194.44.112.13/journals/4776p.pdf.